Journal of Medicinal Chemistry

Nitro *seco* Analogues of the Duocarmycins Containing Sulfonate Leaving Groups as Hypoxia-Activated Prodrugs for Cancer Therapy

Ralph J. Stevenson,* William A. Denny, Moana Tercel, Frederik B. Pruijn, and Amir Ashoorzadeh

Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

Supporting Information

ABSTRACT: The synthesis of 19 (5-nitro-2,3-dihydro-1*H*benzo[e]indol-1-yl)methyl sulfonate prodrugs containing sulfonate leaving groups and 7-substituted electron-withdrawing groups is reported. These were designed to undergo hypoxia-selective metabolism to form potent DNA minor groove-alkylating agents. Analogues 17 and 24, containing the benzyl sulfonate leaving group and a neutral DNA minor

groove-binding side chain, displayed hypoxic cytotoxicity ratios (HCRs) of >1000 in HT29 human cancer cells in vitro in an antiproliferative assay. Four analogues maintained large HCRs across a panel of eight human cancer cell lines. In a clonogenic assay, **19** showed an HCR of 4090 in HT29 cells. Ten soluble phosphate preprodrugs were also prepared and evaluated in vivo, alone and in combination with radiation in SiHa human tumor xenografts at a nontoxic dose. Compounds **34** and **39** displayed hypoxic log₁₀ cell kills (LCKs) of 1.78 and 2.71, respectively, equivalent or superior activity to previously reported chloride or bromide analogues, thus showing outstanding promise as hypoxia-activated prodrugs.

INTRODUCTION

The DNA minor groove (adenine N3) alkylating agents exemplified by the natural antitumor antibiotic duocarmycin SA¹ (1) and by a range of simpler synthetic precursor *seco*-form analogues [e.g., hydroxyCBI (*seco*-1,2,9,9atetrahydrocyclopropa[*c*]benz[*e*]indol-4-one) (2, Figure 1)]² are extremely potent (sub-nM IC₅₀) cytotoxins. Their high potency is considered to be due to their ability to become much more reactive alkylators following initial noncovalent DNA binding³ and to then form DNA monoadducts following a single alkylation event, with these lesions generating little DNA distortion and thus evading some routes of DNA repair. Some analogues of this class [e.g., adozelesin (3) and carzelesin (4), Figure 1]^{4,5} did undergo clinical trials for cancer treatment but were too myelotoxic.

This class has become a major focus for the development of selective prodrug forms, including those designed to release these potent "effectors" by exploiting the specific physiological property of hypoxia in solid tumors. A recent review outlines the challenges, opportunities, and strategies in targeting tumor hypoxia in this regard.⁶ A CBI analogue (5, Figure 1) with a quinone "trigger" showed no oxic/hypoxic differential, which was suggested to be due to prodrug instability.⁷ Other analogues (e.g., 6, Figure 1) were tested against cells overexpressing or lacking the two-electron reductase DT-diaphorase, but selective hypoxic cytotoxicity was not evaluated.⁸

We have previously shown^{9,10} that nitro analogues (e.g., 7, Figure 1) of duocarmycins are hypoxia-selective, undergoing oxygen-reversible one-electron reduction that ultimately results in generation of the corresponding amino compounds (e.g., 7a,

Figure 1) under hypoxia. The latter amines are potent cytotoxins¹¹ with a similar mechanism to the phenolic secoduocarmycins, alkylating at N3 of adenine in AT-rich regions of DNA,9,12 presumably via an imino form (Figure S1 in the Supporting Information) of the spirocyclohexadienone. In contrast, the hypoxia-activated prodrug (HAP) nitro compounds are relatively nontoxic, consistent with their inability to undergo spirocyclization. The hypoxic cytotoxicity ratios [HCR = $IC_{50}(oxic)/IC_{50}(hypoxic)$] of compounds such as 7 were variable among cell lines, suggested due to their relatively low one-electron reduction potentials [E(1) = -512 mV for 8,Figure 1].¹³ Analogues bearing electron-withdrawing groups (EWGs) on ring A (as defined in Figure 1) at the 7-position had the greatest effect [E(1) values from -350 to -420 mV] in raising the reduction potential. The 7-sulfonamide 9 (Figure 1) had HCRs of 19-330 across an 11-cell line panel¹³ and also presented the opportunity of further modification to provide increased aqueous solubility. The sulfonamide alcohol 10 (Figure 1) showed HCRs from 10 to 250 across a 14-cell line panel, and the corresponding phosphate preprodrug 11 (Figure 1, which rapidly hydrolyzed to 10 in plasma) showed significant hypoxic log₁₀ cell kills additional cell kill, on a log scale, for the combination of radiation and nitroCBI as compared to radiation alone; log₁₀ cell kills (LCKs) of 0.41-1.82] in mice in combination with radiation (to sterilize the oxygenated cells) in excision assays with five different human tumor xenograft models.¹⁴ In SiHa cervical carcinoma xenografts, the combination of 11 and radiation gave complete tumor sterilization in 3/

Received: December 20, 2011 Published: February 16, 2012

Article

Figure 1. (+)-Duocarmycin SA, adozelesin, carzelesin, and some previously reported analogues of the duocarmycins.

5 mice, whereas the corresponding aminoCBI **10** was completely inactive. Similar trends were observed for 7-carboxamide analogues.¹⁴ We recently showed that related nitroCBIs bearing a bromide leaving group also provide high HCRs (10–286) in HT29 colon carcinoma and SiHa cell lines, with their phosphate preprodrugs also showing high hypoxic LCKs (0.87–2.80) in SiHa human tumor xenografts.¹⁵

Finally,¹⁶ we have also compared chloride versus sulfonate leaving groups (e.g., **12** and **13**, Figure 1), since the latter are better leaving groups than chloride, with significantly greater nucleofugalities.¹⁷ In nitroCBIs lacking an A ring substituent, sulfonates with neutral DNA minor groove-binding side chains¹⁸ had consistently higher HCRs (IC₅₀ ratios) than the corresponding chloride compounds; a comparison of 7, **12**, and **13** in SKOV3 ovarian carcinoma cells showed HCRs of 2.8, 39, and 246, respectively.¹⁶ The general conclusion was that sulfonate leaving groups offer a way of increasing the hypoxic selectivity of nitroCBIs without introducing A ring substituents. In this manuscript, we now systematically explore combinations of sulfonate leaving groups, A ring E(1)-raising 7-EWGs, and various DNA minor groove-binding side chains and evaluate the products as HAPs in vitro and phosphate preprodrugs in vivo.

RESULTS AND DISCUSSION

Chemistry. The new nitroCBI prodrugs 14-32 described in this manuscript are listed in Table 1, and their syntheses are shown in Schemes 5–10. New nitroCBI phosphate preprodrugs 33-42 are listed in Table 3, and their syntheses are shown in Schemes 11–14. The syntheses of precursors and important intermediates are shown in Schemes 1–4.

We previously demonstrated that nitroCBIs containing a chloride leaving group and A ring EWGs raise E(1) relative to unsubstituted parent compounds, thus providing HAPs with enhanced reductive metabolism and improved hypoxia-selective cytotoxicity.^{9,13} While all A ring substituents (i.e., 6-, 7-, 8-, and 9-) raised E(1), the effect was strongest when the substituent was in the 7-position $[\Delta E(1) = 83 - 159 \text{ mV}]$. Four examples of 7-substituents (NO₂, SO₂Me, CN, and SO₂NH₂) raised E(1)values to above -400 mV. Although higher E(1) alone was not sufficient to observe hypoxic selectivity and significant HCRs (>10) were found for several nitroCBIs (e.g., 7-CONH₂) with $E(1) < -400 \text{ mV}^{13}$ the combination of 7-substituents with Hbond donor capacity and higher E(1) generally provided the most highly selective compounds. In the current work, we chose to limit our targets to 7-substituted nitroCBIs. This provides a direct comparison of the new nitroCBIs as HAPs with the 7-substituted prodrugs^{13,14} and 7-substituted phosphate preprodrugs¹⁴ previously reported. It was demonstrated in the chloride series that while the final products are structurally more complex than the corresponding unsubstituted analogues, their syntheses were generally easier.¹³ This was a direct consequence of the A ring EWGs, which direct nitration of the benzindoline intermediates to the desired 5regioisomer. Although this key step was not completely selective, the major isomer was readily purified by recrystallization or chromatography, and we postulated that this may also be the case in the sulfonate series. In the current study, we

Table 1. Cytotoxicity Data for NitroCBIs 14-32 (Sulfonates) and Known¹⁴ Chlorides 10 and 144-146^a

						IC ₅₀	(µM)		
					HT29			SiHa	
compd	Z	R	Y	oxic	hypoxic	HCR ^c	oxic	hypoxic	HCR ^c
14	CN	Α	OSO ₂ CH ₂ Ph	2.6 ± 0.6	0.043 ± 0.01	94 ± 24	0.65 ± 0.14	0.026 ± 0.007	31 ± 11
15	CN	В	OSO2CH2Ph	2.5 ± 0.3	0.49 ± 0.06	5.2 ± 1.2	0.71 ± 0.12	0.035 ± 0.008	23 ± 7
16	CN	С	OSO_2CH_2Ph	3.4 ± 0.3	0.62 ± 0.03	5.4 ± 0.3	0.57 ± 0.07	0.019 ± 0.002	31 ± 2
17	CONH ₂	Α	OSO ₂ CH ₂ Ph	9.2 ± 2.4	0.016 ± 0.006	1370 ± 502	0.99 ± 0.29	0.18 ± 0.02	5.8 ± 1.9
18	CONH ₂	D	OSO2CH2Ph	2.2 ± 0.1	0.038 ± 0.01	58 ± 4	0.53 ± 0.08	0.12 ± 0.03	4.9 ± 1.4
19	CONH ₂	Е	OSO_2CH_2Ph	7.0 ± 0.5	0.17 ± 0.02	40 ± 4	2.1 ± 0.5	0.046 ± 0.005	45 ± 8
20	CONH ₂	В	OSO2CH2Ph	22 ± 7	0.22 ± 0.05	105^{d}	18.5 ± 0.3	0.24 ± 0.04	64 ± 3
21	CONH ₂	С	OSO ₂ CH ₂ Ph	4.6 ± 1.7	0.43 ± 0.22	21 ± 14	2.1 ± 1.3	0.096 ± 0.015	22 ± 14
22	$CONH(CH_2)_2OH$	Α	OSO ₂ CH ₂ Ph	15 ± 3	0.61 ± 0.22	13 ± 2	0.90 ± 0.11	0.16 ± 0.05	10 ± 3
23	$CONH(CH_2)_2OH$	D	OSO_2CH_2Ph	4.3 ± 0.2	0.57 ± 0.19	12 ± 6	2.3 ± 0.23	0.21 ± 0.06	12 ± 3
144 ^e	$CONH(CH_2)_2OH$	Α	Cl	5.7 ± 1.8	3.2 ± 0.2	1.7 ± 0.5	ND	ND	ND
145 ^e	$CONH(CH_2)_2OH$	D	Cl	12 ± 2	0.11 ± 0.07	485 ± 196	4.2 ± 1.1	0.24 ± 0.14	20 ± 4
24	SO ₂ NH ₂	Α	OSO_2CH_2Ph	35 ± 4	0.042 ± 0.007	1010 ± 188	13 ± 2	0.18 ± 0.01	70 ± 8
25	SO ₂ NH ₂	D	OSO_2CH_2Ph	1.6 ± 0.3	0.090 ± 0.029	18 ± 3	0.37 ± 0.06	0.045 ± 0.012	10 ± 3
26	$SO_2NH(CH_2)_2OH$	Α	OSO ₂ Me	14 ± 1	14 ± 7	8.6 ± 7.9	6.3 ± 0.7	2.1 ± 0.3	3.2 ± 0.3
27	$SO_2NH(CH_2)_2OH$	D	OSO ₂ Me	13 ± 1	2.2 ± 0.7	7.4 ± 1.7	4.1 ± 0.8	0.38 ± 0.17	17 ± 8
28	$SO_2NH(CH_2)_2OH$	Е	OSO ₂ Me	26 ± 3	4.1 ± 2.3	31 ± 13	11 ± 1	0.32 ± 0.03	27 ± 4
29	$SO_2NH(CH_2)_2OH$	Α	OSO ₂ CH ₂ Ph	8.4 ± 0.7	0.36 ± 0.03	23 ± 2	0.94 ± 0.11	0.11 ± 0.008	8.4 ± 1.0
30	$SO_2NH(CH_2)_2OH$	D	OSO ₂ CH ₂ Ph	38 ± 8	3.9 ± 0.4	9.7 ± 3.0^{f}	4.5 ± 1.6	0.055 ± 0.012	66 ± 17
31	$SO_2NH(CH_2)_2OH$	Е	OSO_2CH_2Ph	47 ^d	0.95 ± 0.39	50 ^f	7.3 ± 1.5	0.37 ± 0.03	19 ± 3
32	$SO_2NH(CH_2)_2OH$	F	OSO_2CH_2Ph	50 ± 2	>20 ^d	<2.5 ^f	23 ± 2	0.039 ± 0.003	600 ± 51
146 ^e	$SO_2NH(CH_2)_2OH$	Α	Cl	28 ± 2	11 ± 2	2.1 ± 0.1	13 ± 1	3.5 ± 2.5	16 ± 4
10^e	$SO_2NH(CH_2)_2OH$	D	Cl	9.3 ± 1	0.09 ± 0.02	160 ± 40	2.0 ± 0.2	0.07 ± 0.01	46 ± 10

^{*a*}ND, not determined. ^{*b*}Drug concentration to reduce cell density to 50% of that of controls, 5 days after 4 h of exposure (mean \pm SEM for 3–9 experiments). ^{*c*}HCR = IC₅₀(oxic)/IC₅₀(hypoxic). Values are means of intraexperiment ratios (\pm SEM for 3–6 experiments). ^{*d*}Single determination. ^{*e*}Synthesis and cytotoxicity data of nitroCBIs with chloride leaving groups previously reported. ^{14 *f*}Values are interexperimental.

	Table 2. HCRs'	' of Com	pounds 17	. 19	, 20, a	and 24	in a	Panel	of	Human	Tumor	Cell	Lines
--	----------------	----------	-----------	------	---------	--------	------	-------	----	-------	-------	------	-------

compd ^c	SKOV3 ^d	A549 ^d	$C33A^d$	H1299 ^d	H460 ^d	HCT116 ^d	$HCT8^d$	$PC3^d$
17	85 ± 17	6.7 ± 0.5	76 ± 62	86 ± 45	32 ± 22	13 ± 5	55 ± 40	ND
19	ND	34 ± 1	184 ± 149	644 ± 153	104 ± 74	403 ± 280	283 ± 201	ND
20	ND	38 ± 3	93 ± 6	255 ^e	>114 ^e	127 ± 37	374 ^e	ND
24	119 ± 17	20 ± 4	177 ^e	226 ± 28	0.67 ^e	193 ± 70	ND	$278~\pm~72$

^{*a*}ND, not determined. ^{*b*}HCR = $IC_{50}(\text{oxic})/IC_{50}(\text{hypoxic})$. Values are means of intraexperiment ratios (±SEM for 2–5 experiments). ^{*c*}See Table 1. ^{*d*}SKOV3, ovarian carcinoma; A549, nonsmall-cell lung carcinoma; C33A, cervical carcinoma; H1299, lung carcinoma; H460, large-cell lung carcinoma; HCT116, colorectal carcinoma; HCT8, colon adenocarcinoma; and PC3, prostate carcinoma. ^{*e*}Single determination.

chose EWGs [Z in Table 1, i.e., CN,¹³ CONH₂,¹³ SO₂NH₂,¹³ CONH(CH₂)₂OH,¹⁴ and SO₂NH(CH₂)₂OH¹⁴] based on our established syntheses for chloride analogues and/or improved hypoxia-selective cytotoxicity for chloride analogues.^{9,13,14} A series of DNA minor groove-binding side chains (R in Table 1) were selected based on our previous work with chloride,^{13,14} bromide,¹⁵ and sulfonate¹⁶ analogues. We have recently noted that alternative leaving groups (i.e., bromide¹⁵ or sulfonates¹⁶) are especially susceptible to halide ion scrambling and elimination in a basic environment. These potential side reactions are enhanced by having EWGs in rings A and B (as

defined in Figure 1). Thus, once sulfonate leaving groups were incorporated into the nitroCBI scaffolds, extra care was required (e.g., use of dilute base and cold temperatures) to avoid elimination of RSO_2OH . Generally, we chose to introduce sulfonate leaving groups late in the synthesis.

The intermediate 7-cyano acetate 47 was obtained by several routes (Scheme 1), the best of which was halogen exchange of 43 to give iodide 44 followed by protecting group exchange to give 45 and quantitative conversion to 47. This sequence provided the highest overall yield with no separation issues. Nitration of 47 was conducted using concentrated H_2SO_4 with

Table 3.	Antitumor Activity for NitroCB	I Phosph	ates 33-42 (Su	lfonates), Nonp	hosphate 19, ar	ıd Known ¹⁴	11, 147, and 148	(Chlorides) in SiHa H	Human Tumo	r Xenografts ^a
compd	\mathbf{Z}^{p}	\mathbb{R}^{b}	Λ^{p}	control ^c	nitroCBI ^d	b^e	radiation ^f	radiation + nitroCBI g	$^{\eta}d$	hypoxic LCK ⁱ
19	$CONH_2$	ы	OSO_2CH_2Ph	7.15 ± 0.18	6.87 ± 0.20	NS	5.46 ± 0.04	4.30 ± 0.04	0.003	1.16 ± 0.04
33	CONH ₂	IJ	OSO ₂ CH ₂ Ph	7.15 ± 0.18	6.91 ± 0.36	NS	5.46 ± 0.04	5.09 ± 0.06	NS	0.37 ± 0.06
34	$CONH(CH_2)_2OP(O)(OH)_2$	Α	OSO ₂ CH ₂ Ph	7.37 ± 0.01	6.71 ± 0.08	<0.001	5.40 ± 0.05	3.62 ± 0.31	<0.001	1.78 ± 0.25
35	$CONH(CH_2)_2OP(O)(OH)_2$	D	OSO ₂ CH ₂ Ph	7.37 ± 0.01	6.92 ± 0.11	<0.001	5.40 ± 0.05	4.42 ± 0.10	0.001	0.98 ± 0.09
147 ^j	$CONH(CH_2)_2OP(O)(OH)_2$	D	CI	7.36 ± 0.12	6.56 ± 0.20	<0.001	5.32 ± 0.09	3.11 ± 0.22	<0.001	2.21 ± 0.19^{k}
36	$SO_2NH(CH_2)_2OP(O)(OH)_2$	Υ	OSO_2Me	7.35 ± 0.12	7.15 ± 0.06	NS	4.98 ± 0.13	4.38 ± 0.24	0.073	0.60 ± 0.22
37	$SO_2NH(CH_2)_2OP(O)(OH)_2$	D	OSO_2Me	7.35 ± 0.12	7.18 ± 0.13	NS	4.98 ± 0.13	4.65 ± 0.21	NS	0.33 ± 0.19
38	$SO_2NH(CH_2)_2OP(O)(OH)_2$	ц	OSO_2Me	7.15 ± 0.18	7.09 ± 0.11	NS	5.46 ± 0.04	4.75 ± 0.17	0.057	0.71 ± 0.14
39	$SO_2NH(CH_2)_2OP(O)(OH)_2$	Α	OSO_2CH_2Ph	7.24 ± 0.07	6.53 ± 0.29	NS	5.10 ± 0.13	2.39 ± 0.03	<0.001	2.71 ± 0.11^{l}
40	$SO_2NH(CH_2)_2OP(O)(OH)_2$	D	OSO ₂ CH ₂ Ph	7.24 ± 0.07	6.92 ± 0.21	NS	5.10 ± 0.13	4.92 ± 0.26	NS	0.18 ± 0.23
41	$SO_2NH(CH_2)_2OP(O)(OH)_2$	Е	OSO ₂ CH ₂ Ph	7.24 ± 0.07	6.74 ± 0.23	NS	5.10 ± 0.13	4.32 ± 0.20	0.01	0.78 ± 0.18
42	$SO_2NH(CH_2)_2OP(O)(OH)_2$	н	OSO ₂ CH ₂ Ph	7.24 ± 0.07	7.08 ± 0.16	NS	5.10 ± 0.13	4.76 ± 0.09	NS	0.34 ± 0.12
$148^{'}$	$SO_2NH(CH_2)_2OP(O)(OH)_2$	Α	CI	7.62 ± 0.10	7.29 ± 0.31	NS	5.50 ± 0.15	4.96 ± 0.14	NS	0.54 ± 0.17
11	$SO_2NH(CH_2)_2OP(O)(OH)_2$	D	CI	7.52 ± 0.12	6.89 ± 0.26	NS	5.73 ± 0.05	3.90 ± 0.18	<0.001	1.83 ± 0.15
^a NS, not :	significant ($p > 0.05$). ^b See Table 1. ^c	Values are	mean of log10 clon	ogens/g tumor \pm :	SEM for a control	group of thre	e mice assayed by ex	cision 18 h after iv dosing	, culturing, and	determining the
number o	of surviving colony-forming cells afte	r 14 days.	^d Values are mear	n of log ₁₀ clonoger	$\frac{1}{2}$ s tumor \pm SE	M for groups	of three mice for n	hitroCBI alone (42g or 1	$3 \mu mol/kg for$	19). ^e Statistical

Journal of Medicinal Chemistry

Scheme 1. Synthesis of Intermediates 58, 63, 70, and 72^a

"Reagents and conditions: (a) NaI, 2-butanone, reflux. (b) (i) TFA, CH_2Cl_2 ; (ii) TFAA, pyridine, 0 °C. (c) (From 45) AgOAc, HOAc, reflux. (d) AcOCH₂CH=CHOAc, DMF, NaH, 0 °C. (e) (From 49) Bu₃SnH, AIBN, benzene, reflux. (f) NIS, TsOH, CH₃CN, 35 °C. (g) NaH, CH₂=CHCH₂Br, DMF, 0 °C. (h) (From 53) TEMPO, Bu₃SnH, benzene, reflux. (i) Zn, HOAc, THF, H₂O, reflux. (j) (From 55) Ac₂O, Et₃N, DMAP, THF. (k) KNO₃, 98% H₂SO₄, -10 °C. (l) Cs₂CO₃, KOH, THF, reflux. (m) H₂O₂, K₂CO₃, DMSO. (n) TFA, EDCI·HCl, TsOH, DMA. (o) (From 69) NaNO₂, TFA, 0 °C. (p) THPO(CH₂)₂NH₂, PyBOP, DIPEA, THF, 0 °C. (q) Cs₂CO₃, MeOH, 0 °C.

a slight excess of KNO₃, giving the desired 5-NO₂ isomer 57 (structure confirmed by 2D NMR experiments) (65%) and 9- NO_2 isomer 56 (5%). Short reaction times and low temperatures in this and subsequent nitrations were required to preserve the acetate protecting group. Base-promoted cleavage of the trifluoroacetamide and acetate gave indoline 58. The neutral minor groove-binding side chain 5,6,7trimethoxyindole (TMI) was introduced using 5,6,7-trimethoxy-1H-indole-2-carboxylic acid and N-ethyl-N'-(3dimethylaminopropyl)carbodiimide hydrochloride (ED-CI·HCl) as a coupling reagent (Scheme 5). As previously reported, the EDCI-mediated reactions were most successful under acidic conditions (catalytic anhydrous TsOH).¹³ The alcohol 59 thus obtained was converted to the benzyl sulfonate 14 using benzylsulfonyl chloride in pyridine. Two polar neutral side chains were introduced by first forming benzyl sulfonate 61 from Boc-protected indoline 60, followed by Boc-deprotection to give 62, and then coupling with the carboxylic acids in the final step giving benzyl sulfonates 15 and 16 (Scheme 5).

Five primary 7-carboxyamido benzyl sulfonates (Scheme 6) were synthesized using the 5-nitro-7-cyano acetate 57 (Scheme 1) as a starting material. Attempts to hydrolyze nitrile 57 under acidic conditions (90% H_2SO_4) led to loss of the acetate and further reaction of the primary alcohol. Instead, hydrolysis was achieved using H_2O_2 in DMSO under basic conditions¹⁹ that

also resulted in cleavage of the trifluoroacetamide and acetate to provide **63** in good overall yield (Scheme 1). Coupling of **63** with 5,6,7-trimethoxy-1*H*-indole-2-carboxylic acid, 5-(2-(dimethylamino)ethoxy)-1*H*-indole-2-carboxylic acid hydrochloride, introducing the 5-[(dimethylamino)ethoxy]indole (DEI) basic side chain, and (*E*)-3-(4-methoxyphenyl)acrylic acid, introducing the 4-methoxystyrene (MS) side chain, gave 7-carboxyamido alcohols **64–66** (Scheme 6). Sulfonylation of **64–66** gave the benzyl sulfonates **17–19**. Benzyl sulfonates **19–21** were synthesized by an alternative route via Bocprotected indoline alcohol **67**, which was first converted to benzyl sulfonate **68** before undergoing Boc deprotection and couplings.

Two secondary 7-carboxamido benzyl sulfonates (22 and 23, Scheme 7) were synthesized using 63 (Scheme 1) as a starting material. Coupling with trifluoroacetic acid (TFA) allowed selective protection of the indoline to give 69, which was converted into carboxylic acid 70 by diazotization (NaNO₂/TFA). The secondary amide was formed by benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate (pyBOP)-mediated coupling to give the tetrahydropyranyl (THP)-protected alcohol 71. Coupling of the deprotected amine 72 with carboxylic acids introduced the TMI and DEI side chains giving 73 and 74 (Scheme 7). Sulfonylation of the alcohols 73 and 74 gave the benzyl sulfonates 75 and 76. The final step

Scheme 2. Synthesis of Intermediate 91^a

63% → **91** Y = H, R = H

^{*a*}Reagents and conditions: (a) (i) KNO₃, SO₂Cl₂, CH₃CN, 0 °C; (ii) Bn₂NH, Et₃N, THF. (b) KOH, MeOH, H₂O, reflux. (c) DPPA, *tert*-BuOH, Et₃N, reflux. (d) NIS, TsOH, CH₂Cl₂, CH₃CN. (e) NaH, allyl bromide, DMF, 0 °C to rt. (f) (From **82**) TEMPO, Bu₃SnH, C₆H₆. (g) H₂SO₄, 0 °C. (h) Boc₂O, THF, reflux. (i) Zn, HOAc, THF, H₂O, reflux. (j) Ac₂O, Et₃N, DMAP, THF. (k) (i) HCl, dioxane; (ii) TFAA, Et₃N, THF, 0 °C. (l) (From **88**) KNO₃, H₂SO₄, 0 °C. (m) Cs₂CO₃, MeOH, THF.

Scheme 3. Synthesis of Intermediates 99 and 131^a

^{*a*}Reagents and conditions: (a) NaI, 2-butanone, reflux. (b) AgOMs, CH₃CN. (c) (i) ClSO₃H, CH₂Cl₂, -78 to 15 °C; (ii) oxalyl chloride, DMF, 0 °C. (d) (From **97**) KNO₃, 98% H₂SO₄, -5 °C. (e) (i) (*t*-BuO)₂(O)PO(CH₂)₂NH₂, DIPEA, CH₂Cl₂, 0 °C; (ii) Cs₂CO₃, MeOH, H₂O, 0 °C.

required the acid-mediated deprotection of the THP-protected alcohols 75 and 76 giving 22 and 23, respectively.

Two primary 7-sulfonamido benzyl sulfonates (24 and 25, Scheme 8) were synthesized via a multistep route starting with the synthesis²⁰ of the protected dibenzylsulfonamide 78 from known¹³ naphthoate 77 (Scheme 2). Ester hydrolysis, modified Curtius reaction, iodination, and allylation followed by radical ring cyclization^{21,22} produced (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) adduct²³ 83. Acid-mediated deprotection removed both the Boc and the benzyl groups of 83 giving 7-sulfonamide 84. Reductive cleavage of the TEMPO group at this stage gave an unstable product, while the corresponding trifluoroacetamide was also unstable to the cleavage conditions, so the Boc protecting group was reinstalled to give 85. Zn/HOAc-mediated reduction of the N–O bond then gave alcohol

86, followed by acetylation to 87 (using only a slight excess of Ac_2O to avoid acetylation of the sulfonamide) and a protecting group exchange to give the trifluoroacetamide 88. Nitration gave the desired 5-NO₂ product 90 (28%) and a significant amount of the 9-NO₂ isomer 89 (17%). Base treatment of 90 removed both the trifluoroacetamide and the acetate groups to give alcohol 91. Coupling of 91 with carboxylic acids introduced the TMI (92) and DEI (93) side chains (Scheme 8). The final step required benzylsulfonylation of 92 to give 24 and of 93 to give 25.

Three secondary 7-sulfonamido methane sulfonates (26-28, Scheme 9) were synthesized using known chloride 94^{13} (Scheme 3) as a starting material. Halide exchange of 94 gave iodide 95, and reaction of 95 with AgOMs gave methane sulfonate 96. During the formation of 7-sulfonyl chloride 97

Scheme 4. Synthesis of Intermediates 114 and 135^a

"Reagents and conditions: (a) NaH, AcOCH=CH(CH₂)OAc, DMF, 0 °C to rt. (b) Bu₃SnH, AIBN, benzene, reflux. (c) (i) $HCl_{(g)}$, dioxane; (ii) TFAA, py, 0 °C. (d) AgOAc, HOAc, 80 °C. (e) KOAc, 18-crown-6, HOAc, 100 °C. (f) AgOAc, HOAc. (g) (From **109**) (i) ClSO₃H, CH₂Cl₂, -80 to 5 °C; (ii) oxalyl chloride, DMF, -10 to 5 °C. (h) KNO₃, 98% H₂SO₄, -12 °C. (i) (i) TBDMSO(CH₂)₂NH₂, DIPEA, CH₂Cl₂, 0 °C; (ii) Cs₂CO₃, MeOH, H₂O, 0 °C to rt. (j) (i) (*t*-BuO)₂(O)PO(CH₂)₂NH₂, DIPEA, CH₂Cl₂, 0 °C; (ii) Cs₂CO₃, MeOH, H₂O, 0 °C.

^{*a*}Reagents and conditions: (a) RCO₂H, EDCI-HCl, TsOH, DMA. (b) PhCH₂SO₂Cl, pyridine, CH₂Cl₂, 0 °C. (c) Boc₂O, THF, reflux. (d) TFA, CH₂Cl₂.

from methane sulfonate **96**, a considerable amount of the corresponding sulfonic acid formed as a precipitate. However, this could be reconverted to **97** by treating a solution of the acid in CH_2Cl_2/DMF with oxalyl chloride, ultimately giving a 94% yield of **97** from **96**. Nitration of **97** gave the desired 5-NO₂ isomer **99** (57%) and some 9-NO₂ isomer **98** (15%). The sulfonamide was formed by reacting **99** with ethanolamine or

^{*a*}Reagents and conditions: (a) RCO_2H , EDCI·HCl, TsOH, DMA. (b) $PhCH_2SO_2Cl$, pyridine or Et_3N , 0 °C. (c) Boc_2O , dioxane, reflux. (d) (i) TFA, CH_2Cl_2 ; (ii) RCO_2H , EDCI·HCl, TsOH, DMA.

alcohol-protected (THP or TBDMS) ethanolamine, followed by cleavage of the trifluoroacetamide, to give compounds 100-102 (Scheme 9). Coupling of 7-sulfonamides 100-102 with carboxylic acids introducing TMI, DEI, and MS side chains, followed by TFA-promoted deprotection where required, gave methane sulfonates 26-28. EDCI-HCl-mediated coupling of 100 with 4-methoxycinnamic acid resulted in a long reaction time and significant exchange of methane sulfonate to chloride, Scheme 7. Synthesis of Compounds 22 and 23 of Table 1^a

D2-01% 22, 23 Y = SO₂CH₂Ph, Z = H, R = A, D of Table 1

^aReagents and conditions: (a) RCO₂H, EDCI-HCl, TsOH, DMA. (b) PhCH₂SO₂Cl, pyridine, 0 °C. (c) MeSO₃H, MeOH or TFA, CH₂Cl₂.

Scheme 8. Synthesis of Compounds 24 and 25 of Table 1^a

^{*a*}Reagents and conditions: (a) RCO₂H, EDCI·HCl, TsOH, DMA. (b) PhCH₂SO₂Cl, pyridine, 0 $^{\circ}$ C.

prompting the use of EDCI-TsOH with the THP-protected **101**. In the event, the two-step route gave an improved overall yield of 63% (up from 43%) for **28**.

Four secondary 7-sulfonamido benzyl sulfonates (29-32, Scheme 10) were synthesized by several routes (all Scheme 4). The reaction of methane sulfonate **96** with AgOAc in acetic acid proved to be the most convenient method of forming acetate **109** (97%) (Scheme 4). Chlorosulfonylation followed by nitration gave the desired 5-NO₂ isomer **113** (62%) and 9-NO₂ isomer **112** (20%). The sulfonamide was introduced by reacting **113** with alcohol-protected (TBDMS) ethanolamine to give **114**. The presence of base [diisopropylethylamine (DIPEA) and subsequent addition of aqueous Cs₂CO₃] in this step also removed both trifluoroacetamide and acetate groups. Coupling of **114** with carboxylic acids introduced the TMI (**115**), DEI (**116**), MS (**117**), and 5-[(morpholino)ethoxy]indole²⁴ (MEI) (**118**) side chains (Scheme 10). Benzylsulfonylation of alcohols **115–118** gave benzyl sulfonates **119–122**,

Scheme 9. Synthesis of Compounds 26-28 of Table 1^a

Scheme 10. Synthesis of Compounds 29–32 of Table 1^a

Article

"Reagents and conditions: (a) RCO_2H , EDCI·HCl, TsOH, DMA. (b) $PhCH_2SO_2Cl$, pyridine, 0 °C. (c) TFA, CH_2Cl_2 , MeOH.

and the final TFA-mediated cleavage of the TBDMS group gave 29-32.

The phosphate preprodrug 33 (Scheme 11) was prepared by coupling of 63 (Scheme 1) with a phosphate ester-containing

^aReagents and conditions: (a) 5-(2-((Di-tert-butoxyphosphoryl)oxy)-ethoxy)-1H-indole-2-carboxylic acid, EDCI-HCl, TsOH, DMA. (b) PhCH₂SO₂Cl, pyridine, CH₂Cl₂, 0 °C. (c) TFA, CH₂Cl₂.

carboxylic acid¹⁴ to give **123**, followed by formation of benzyl sulfonate **124** and TFA-mediated deprotection of the phosphate ester.

Phosphates 34-42 (Table 3) are more water-soluble preprodrugs of alcohols 22, 23, and 26-32 of Table 1, and their syntheses (Schemes 12-14) are based on methodology previously reported.¹⁴

In Vitro Cytotoxicity. In accordance with our previous studies,¹⁴ hypoxia-selective cytotoxicity in vitro was assessed with the cell-permeable alcohols and other 7-substituted compounds rather than the highly polar phosphates. Thus

^{*a*}Reagents and conditions: (a) (From 99 to 100) (i) ethanolamine, CH_2Cl_2 , 0 °C; (ii) Cs_2CO_3 , MeOH, H_2O , 0 °C. (b) (From 99 to 101) (i) THPO(CH_2)₂NH₂, CH_2Cl_2 , 0 °C; (ii) Cs_2CO_3 , MeOH, H_2O , 0 °C. (c) (From 99 to 102) (i) TBDMSO(CH_2)₂NH₂, Et_3N , CH_2Cl_2 , 0 °C; (ii) Cs_2CO_3 , MeOH, H_2O , 0 °C. (d) RCO₂H, EDCI·HCl or EDCI·TsOH, TsOH, DMA or CH_2Cl_2 . (e) TFA, CH_2Cl_2 , MeOH.

Scheme 12. Synthesis of Compounds 34 and 35 of Table 3^{a}

^aReagents and conditions: (a) (*t*-BuO)₂(O)PO(CH₂)₂NH₂, PyBOP, DIPEA, 0 °C. (b) Cs₂CO₃, MeOH, 0 °C. (c) RCO₂H, EDCI·HCl, TsOH, DMA. (d) PhCH₂SO₂Cl, pyridine, 0 °C. (e) TFA, CH₂Cl₂.

Scheme 13. Synthesis of Compounds 36-38 of Table 3^a

^aReagents and conditions: (a) RCO₂H, EDCI·HCl, TsOH, DMA. (b) TFA, CH₂Cl₂.

compounds 14-32 were evaluated by measuring IC₅₀ values under oxic (20% O₂) and hypoxic (<20 ppm O₂) conditions and deriving a HCR [HCR = $IC_{50}(oxic)/IC_{50}(hypoxic)$] (Table 1 and Figures S2 and S3 in the Supporting Information). Data for previously reported¹⁴ alcohols containing a chloride leaving group (10, 144-146) are presented for comparison. These chlorides are suitable for comparison because of their closely matching structures, and 10 and 145 are of interest as they provided the highest HCRs of the eight sulfonamides or carboxamides in our previous report.¹⁴ In our recent study on nitroCBIs containing sulfonate leaving groups but lacking A ring substituents, we reported that sulfonates with neutral side chains (e.g., TMI) showed consistently higher HCRs than the corresponding chloride analogues using IC₅₀based assays.¹⁶ We have also shown that nitroCBIs containing a bromide leaving group follow a similar trend to chlorides in regards to the side chain structure-activity relationship (SAR): those with basic side chains provide larger HCRs.¹⁵

Figure 2 illustrates data from Table 1 where IC_{50} values under oxic versus hypoxic conditions are plotted separately for HT29 and SiHa. In both cell lines, almost all compounds are

displaced from the line indicating HCR = 1 (equivalent toxicity under both conditions). In HT29, the majority of the benzyl sulfonates are more toxic under both oxic and hypoxic conditions and also more hypoxia-selective than the methane sulfonates. The most selective benzyl sulfonates 17 and 24, containing a neutral TMI side chain, have very large HCRs of 1370 and 1010, respectively. As previously suggested,¹³ it is possible that H-bond donor capacity of sulfonamides or carboxamides enhances their reductase-substrate ability for hypoxic activation. This feature combined with higher E(1) (7-EWG in A ring) both contribute to the high selectivity. In contrast, their previously reported chloride analogues (TMI side chain) showed low HCRs of 2.8 and 3.6, respectively, while the chlorides with a basic DEI side chain exhibited large HCRs of 60 and 330, respectively.¹³ Other benzyl sulfonates exhibiting significant hypoxic selectivity are 14, 18-21, 22, 25, 29, and 31 (HCR = 13-105), the majority of which have neutral side chains. The two highly selective previously reported¹⁴ chlorides 10 (HCR = 160) and 145 (HCR = 485) containing a basic DEI side chain, compare well on the basis of hypoxia-selectivity with most of the benzyl sulfonates in HT29 cells. The SAR in regards to leaving group and side chain in SiHa

The SAR in regards to leaving group and side chain in SiHa cells is more difficult to interpret than in HT29 cells (Figure 2). For instance, methane sulfonates 27 and 28 do show significant HCRs (17 and 27), faring better than several benzyl sulfonates. However, in general, the benzyl sulfonates are more selective. Notably, two of the most selective, **30** (HCR = 66) and **32** (HCR = 600), contain basic side chains. Other benzyl sulfonates exhibiting significant HCRs (19–70) are **14–16**, **19–21**, **24**, and **31**, none of which contain a basic side chain. In SiHa cells, the selective chlorides¹⁴ **10** (HCR = 46) and **145** (HCR = 20) were comparable to the benzyl sulfonates. However, in both HT29 (17 and 24) and SiHa (32) cell lines, we here provide examples of nitroCBIs containing a benzyl sulfonate leaving group that appear markedly more hypoxia-

"Reagents and conditions: (a) RCO₃H, EDCI·HCl, TsOH, DMA. (b) PhCH₂SO₂Cl, pyridine, 0 °C. (c) TFA, CH₂Cl₂.

Figure 2. Cytotoxicity of sulfonates 14-32 (Table 1) and known¹⁴ chlorides 10 and 144-146 under oxic and hypoxic conditions in HT29 and SiHa human tumor cell lines assessed using an antiproliferative assay. Z, R, and Y: see Table 1. Dashed lines: HCR = 1, 10, or 100.

selective than previously reported nitroCBIs containing a chloride leaving group. It is noteworthy that 17 is much less selective in SiHa than HT29 cells, and 32 is much less selective in HT29 than SiHa cells. Figure S4 (Supporting Information) illustrates cytotoxicity under oxic and hypoxic conditions in SiHa versus HT29 cells for sulfonates 14-32 and known¹⁴ chlorides 10 and 144-146 of Table 1. For the oxic data, the intercept is significantly different (from zero) and indicates that HT29 IC₅₀ values are, on average, 4.2-fold higher than in SiHa. None of the compounds are more toxic in HT29 than in SiHa under oxic conditions. There is no significant correlation under hypoxia, and this suggests different reductases at work in SiHa versus HT29. Furthermore, the spread of hypoxic IC₅₀ data is much greater in HT29 (~1000-fold) than in SiHa (~20-fold). We recently reported²⁵ that for chloride 10 in SiHa, the oxic toxicity is a consequence of a low level of oxic reduction. If the same mechanism is true for the new sulfonates, then Figure S4 in the Supporting Information suggests that oxic reductases are

shared between SiHa and HT29. It appears that in general SiHa is more sensitive than HT29. A combined summed ranking of HCRs for the 19 sulfonates evaluated in HT29 and SiHa indicates that compounds **24** and **20** receive the highest ranks (Figure S4 in the Supporting Information).

Benzyl sulfonates 17, 19, 20, and 24 with high hypoxic selectivity in either HT29 or SiHa cells were examined in a panel of eight human tumor cell lines of various tissue origins using an antiproliferative assay (Tables 2 and S1 in the Supporting Information). All four compounds have neutral side chains, and compound 20 contains an alcohol that could be converted into a solubilizing phosphate group. Sizable HCRs in all cell lines (with the exception of 24 in H460 cells) were observed, indicating that the unidentified enzymes responsible for nitro reduction are widely expressed and that the bulky benzyl sulfonate does not hinder reduction to the point of compromising hypoxic selectivity. The TMI side chain presents no special advantages as compounds 19 and 20 exhibit HCRs of 34-644 and 38-374, respectively, that is, at least as large as for 17. While 17, 19, and 20 contain a 7-CONH₂ substituent, 24 contains a 7-SO₂NH₂ group and, with the exception of H460, similarly showed substantial HCRs of 20-278.

The question arises as to whether there is an HCR advantage to combining both a bulky sulfonate leaving group and an A ring EWG. For a given A ring substituent, a switch from chloride to benzyl sulfonate almost always results in an improvement in HCR when the side chain is neutral and a reduction when the side chain is strongly basic, with the effect mostly being a product of different hypoxic IC_{50} values. If a bulky sulfonate leaving group is present, then a compound with an A ring EWG will generally show an improvement in HCR over a compound lacking such a substituent, but the effect depends on both the side chain and the cell line. The two effects (A ring substitution vs nature of the leaving group) have such different SARs that making a generalization is difficult.

We have previously reported cytotoxicities in both an antiproliferative assay (based on IC_{50} values) and a clonogenic assay (based on C_{10} values).^{13,14} In the current study, the cytotoxicity of **19** was further evaluated in HT29 cells and **16**, **17**, **20**, **21**, and **23** in SiHa cells using a clonogenic assay.²⁷ All compounds exhibit much higher toxicity under hypoxic (<20 ppm O₂) than oxic (20% O₂) conditions [HCR = $C_{10}(\text{oxic})/C_{10}(\text{hypoxic})$], where cell killing (C_{10}) was quantified as the drug concentration required to lower the surviving fraction to 10% of that of controls. For instance, compound **19** provided a remarkably high HCR of 4090 in HT29 cells (cf. HCR = 40 in antiproliferative assay). The compounds evaluated in SiHa cells showed HCRs of 41–422 (cf. HCR = 5.8–64 in antiproliferative assay), and although the clonogenic assay ratios are higher (1.3–100-fold) than those of the antiproliferative assay, both assays demonstrate similar trends.

In Vivo Activity. We have previously shown that nitroCBIs incorporating a solubilizing phosphate group have excellent aqueous solubility (in the mM range), that the phosphate moiety of nitroCBI 11 is rapidly hydrolyzed in plasma to the corresponding alcohol, and that 11 at a nontoxic dose of 42 μ mol/kg provides significant hypoxic tumor cell kill in a range of human tumor xenografts.¹⁴ Higher doses (>100 μ mol/kg) caused acute toxicity in some animals, and a maximum tolerated dose was difficult to define.¹⁴ Thus, in the present study, the phosphates were administered at an intravenous (iv) dose of 42 μ mol/kg to SiHa tumor-bearing immunocompromised mice either alone or 5 min after a single 15 Gy dose of ionizing

Journal of Medicinal Chemistry

radiation (sufficient to sterilize aerobic tumor cells). At this dose, no acute toxicity was observed for any of the analogues. Eighteen hours later, the tumors were excised, and surviving clonogens were assessed after 14 days to determine the number of colony-forming cells per gram of tumor tissue (Figure S5 in the Supporting Information).

The 7-carboxamide **33**, a phosphate analogue of alcohol **20**, contains a benzyl sulfonate leaving group and a phosphate moiety incorporated in the DNA-binding side chain. It exhibited weak activity as a single agent (nitroCBI alone), and the hypoxic LCK of radiation plus drug (vs radiation alone) was relatively low (0.37), with neither measure being statistically significant (Table 3 and Figure 3 where values for

Figure 3. Antitumor activity of sulfonates **19** and **33–42** (Table 3) and known¹⁴ chlorides **11**, **147**, and **148** in SiHa human tumor xenografts assayed by tumor excision 18 h after iv dosing with nitroCBI (42 or 13 μ mol/kg for **19**) only or γ -irradiation (15 Gy) plus nitroCBI, followed by culturing for 14 days. Values are means \pm SEMs for groups of three mice (control or nitroCBI alone) or five mice (radiation alone or radiation + nitroCBI). Values for control and radiation alone are averages \pm SEMs from seven independent experiments. Downward arrow: the number of tumors for which no surviving clonogens could be detected within sample size and detection limits of the assay. *, p < 0.05; **, p < 0.01; calculated using intraexperiment controls.

control alone and radiation alone are averages of all independent experiments). Interestingly, 7-carboxamide **19** with the neutral MS side chain and the absence of a phosphate moiety provided a statistically significant hypoxic LCK of 1.16 at the lower dose (limited due to poor solubility) of 13 μ mol/kg.

Secondary 7-carboxamides 34 and 35, which incorporate a phosphate in the carboxamide side chain and contain a benzyl sulfonate leaving group, both provided statistically significant hypoxic LCKs of 1.78 and 0.98, respectively. They also exhibited weak but statistically significant single agent activity. Although 34 (having a neutral TMI side chain) is superior to 35 (having a basic DEI side chain), it was not as active as the previously reported¹⁴ chloride analogue 147 (having a basic DEI side chain) with hypoxic LCK of 2.21.

Secondary 7-sulfonamides 36-38 contain a methane sulfonate leaving group and provided a hypoxic LCK range of 0.33-0.71 (Table 1); 36 (with a neutral TMI side chain) and 38 (with a neutral MS side chain) are superior to 37 (with a basic DEI side chain).

Secondary 7-sulfonamides **39–42** incorporate a phosphate in the sulfonamide side chain and contain a benzyl sulfonate

leaving group. These compounds exhibited hypoxic LCKs of 0.18-2.71. An irradiation dose of 15 Gy provided 2.14 logs of cell kill as compared to control (Table 3 for 39). When 39 was combined with radiation, a greater cell kill was achieved (4.85 log), indicating elimination of radioresistant hypoxic cells within the tumors by the nitroCBI. Compound 39 (with a neutral TMI side chain) was easily the most active of all compounds tested with no clonogens detected in four of four treated tumors (the number quoted is calculated assuming one colony detected for each tumor at the highest number of cells plated; i.e., the true hypoxic LCK will be greater than the reported value of 2.71). This compares favorably with the previously reported¹⁴ two chloride comparators 148 (hypoxic LCK = 0.54) and 11 (hypoxic LCK = 1.83). In the sulfonate series, compounds 39 and 41 with neutral side chains provide greater hypoxic LCKs than 40 (having a DEI side chain) and 42 (having a MEI side chain) with basic side chains, whereas in the chloride series the activity is reversed with 13 (with a basic DEI side chain) exhibiting the greater hypoxic LCK. The moderate in vivo data for 40 and 42 is in contrast to their alcohol analogues 30 and 32, which display high selectivity in SiHa cells in vitro (Table 1). In a recent report,¹⁵ we have shown that nitroCBIs containing a bromide leaving group follow a similar trend to chlorides in regards to side chain with the bromide analogue of 42 (with a basic side chain) providing a hypoxic LCK of 2.80 in SiHa tumor-bearing mice and the bromide analogue of **39** (with a neutral side chain) providing a hypoxic LCK of 1.84.

Six phosphates were also assayed in H460 (human large-cell lung tumor) xenografts at 75 μ mol/kg, which again proved to be a nontoxic dose (Table S2 in the Supporting Information). Although large HCRs were observed in vitro (Tables 2 and S1 in the Supporting Information) for H460, the relatively high IC₅₀ values (Table S1 in the Supporting Information) indicate that it seems to be a relatively resistant cell line. In the event, hypoxic LCKs were mostly disappointing ranging from 0 to 0.60 with little evidence of any single agent activity. The most active compound was the methane sulfonate **36** (having a TMI side chain) with a hypoxic LCK of 0.60.

CONCLUSIONS

The current study was performed to investigate SARs influencing cytotoxicity and hypoxic selectivity for a series of nitroCBI prodrugs and their more water-soluble phosphate preprodrugs. The new compounds contain a sulfonate leaving group (benzyl sulfonate or methane sulfonate) and a 7-EWG, two structural modifications that were shown to independently increase the hypoxic selectivity of related nitroCBIs.¹³⁻¹⁶ Although the target nitroCBIs are structurally more complex than the unsubstituted parents,¹⁶ their syntheses proved generally easier, as previously reported for chlorides.^{13,14} Sulfonate leaving groups¹⁶ are more prone to elimination under basic conditions than the chloride leaving group; however, if the sulfonate group was introduced late in the synthesis and appropriate care was taken, this side reaction was greatly minimized. Moreover, we found during syntheses of nitroCBIs that the sulfonate leaving group was less susceptible to elimination than a bromide.¹⁵ In general, the very good hypoxic selectivity and antitumor activity observed for a number of the sulfonates justified the synthetic effort.

The more bulky benzyl sulfonates proved more hypoxiaselective in vitro than methane sulfonates (Table 1 and Figure 2), as observed previously with A ring unsubstituted sulfonates.¹⁶ A subset of the 7-substituted nitroCBIs with neutral side chains (e.g., 17 and 24) was significantly more hypoxia-selective than those with basic side chains, as also shown previously for unsubstituted parents.¹⁶ Although a subset of three primary 7-carboxamides and one 7-sulfonamide with neutral side chains showed significant hypoxic selectivity across a cell line panel, there were some exceptions to this correlation. For instance, compound 32 (having a weakly basic MEI side chain) showed the largest HCR (IC₅₀ ratio) in SiHa cells of all of the compounds tested. Unlike their primary parents (e.g., 17 and 24), neutral side chains combined with secondary 7-carboxamides (e.g., 22) or 7-sulfonamides (e.g., 26 and 29) did not appear to provide a marked increase in hypoxic selectivity in vitro. This leaves open the possibility that the very high HCRs seen for some sulfonates bearing a TMI side chain are not a consequence of the fact that the side chain is neutral but of some other as yet unexplained property. It would be useful to understand toxicity differentials between sulfonate prodrug and effector, made difficult by the intrinsic instability of the latter due to the powerful leaving group effect of the sulfonate, as better leaving groups might be expected to increase cytotoxic potency. However, several sulfonates displayed nanomolar hypoxic cytotoxicities (Table 1).

We have described two ways of increasing the hypoxic selectivity of nitroCBIs: adding an appropriate EWG to the A ring^{13,14} or incorporating a bulky leaving group.¹⁶ Although both are capable of providing compounds with high HCRs, the former is possibly more powerful since the A ring substituent alone can give consistently high HCRs across a cell line panel,^{13,14} whereas the effect of the sulfonate leaving group is more cell line-dependent,¹⁶ as shown for 17 and 32. The current study demonstrates that combining both effects can give highly hypoxia-selective compounds.

The antitumor activity for the phosphate analogues also demonstrated the previously observed correlation in regard to side chain, with 34 and 39 (both having a benzyl sulfonate leaving group and neutral TMI side chain) providing the greatest hypoxic LCKs of the new compounds tested. Overall, phosphates with neutral side chains provided greater hypoxic LCKs than those with basic side chains, which was opposite to that shown previously for chloride¹⁴ or bromide¹⁵ analogues. Although we do not have an explanation for this observation, it is potentially useful as basic side chains may compromise distribution (by sequestration in acidic organelles) or metabolism. The association between in vitro and in vivo data is not complete; for instance, the alcohol analogue (29) of phosphate 39 exhibited relatively moderate HCRs (IC₅₀ ratios) in vitro in the two cell lines in which it was examined. Nevertheless, 39 was extremely active against hypoxic cells in xenografts of one of these two cell lines. This outstanding in vivo activity of 39 advocates it as a viable hypoxia-activated preprodrug for cancer therapy, effective against the most resistant tumor cell population.

EXPERIMENTAL SECTION

General Chemistry Methods. Final products were analyzed by reverse-phase HPLC (Alltima C18 5 μ m column, 150 mm × 3.2 mm; Alltech Associated, Inc., Deerfield, IL) using an Agilent HP1100 equipped with a diode array detector. The mobile phase was 80% CH₃CN/20% H₂O (v/v) in 45 mM HCO₂NH₄ at pH 3.5 and 0.5 mL/min. The purity was determined by monitoring at 330 \pm 50 nm and was ≥95% for final products unless otherwise stated. The final product purity was also assessed by combustion analysis carried out in the Campbell Microanalytical Laboratory, University of Otago

(Dunedin, New Zealand). Melting points were determined on an Electrothermal 2300 Melting Point Apparatus. NMR spectra were obtained on a Bruker Avance 400 spectrometer at 400 MHz for ¹H and 100 MHz for ¹³C spectra. "Methods" indicate alternative routes to the same compound.

Synthesis of Compounds in Table 1 and their Intermediates. tert-Butyl 7-Cyano-1-(iodomethyl)-1H- benzo[e]indole-3(2H)-carboxylate (44) (Scheme 1). A solution of tert-butyl 1-(chloromethyl)-7-cyano-1*H*-benzo[*e*]indole-3(2*H*)-carboxylate¹³ (43) (10.00 g, 29.2 mmol) in anhydrous 2-butanone (100 mL) was treated with NaI (26.30 g, 175.5 mmol) and heated under reflux for 5 days. The mixture was cooled to room temperature and then evaporated to dryness, and the residue was dissolved in CHCl₃, washed with 5% aqueous sodium disulfite and brine, dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with petroleum ether/EtOAc (5:1) and further recrystallized from CH₂Cl₂/petroleum ether to give 44 as a pale yellow solid (12.40 g, 98%): mp 141-143 °C. ¹H NMR [(CD₃)₂SO]: δ 8.52 (d, J = 1.2 Hz, 1H), 8.11 (br, s, 1H), 8.04 (dd, J = 14.3, 8.7 Hz, 1H), 8.01 (dd, J = 8.8, 3.7 Hz, 1H), 7.73 (dd, J = 8.7, 1.5 Hz, 1H), 4.22–4.10 (m, 2H), 3.89 (dd, J = 11.1, 2.4 Hz, 1H), 3.68 (dd, J = 10.2, 3.0 Hz, 1H), 3.64-3.60 (m, 1H), 1.55 (s, 9H). Anal. calcd for C₁₉H₁₉IN₂O₂: C, 52.55; H, 4.41; N, 6.45. Found: C, 52.83; H, 4.41; N, 6.50.

1-(Iodomethyl)-3-(2,2,2-trifluoroacetyl)-2,3-dihydro-1H-benzo[e]indole-7-carbonitrile (45) (Scheme 1). Method A. A solution of 44 (12.30 g, 28.3 mmol) in CH_2Cl_2 (350 mL) was treated with TFA (65 mL, 849.0 mmol) at 0 °C. The mixture was stirred overnight at room temperature and concentrated under reduced pressure to give 1-(iodomethyl)-7-cyano-1,2-dihydro-3H-benzo[e]indole as a red foam. The residue was then dissolved in pyridine (200 mL), cooled to 0 °C, and treated with trifluoroacetic anhydride (TFAA) (10 mL, 71.8 mmol). The mixture was stirred at 0 °C for 2 h and then poured into a beaker of ice water, and the resulting precipitate was extracted into CH_2Cl_2 (3×). The combined organic layers were washed with HCl (1 M), water, and brine, dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with petroleum ether/EtOAc (7:3) and further recrystallized from CH_2Cl_2 /petroleum ether to give 45 as a pale yellow solid (10.93 g, 90%): mp 187–189 °C. ¹H NMR [(CD₃)₂SO]: δ 8.66 (d, J = 1.5 Hz, 1H), 8.44 (d, J = 9.0 Hz, 1H), 8.20 (d, J = 8.7 Hz, 1H), 8.12 (d, J = 9.0, 1H), 7.86 (dd, J = 8.7, 1.5 Hz, 1H), 4.57 (dd, J = 10.8, 9.3 Hz, 1H), 4.37–4.33 (m, 1H), 4.28 (dt, J = 11.3, 1.8 Hz, 1H), 3.79 (dd, J = 10.4, 3.1 Hz, 1H), 3.72 (dd, J = 10.3, 5.9 Hz, 1H). HRMS (FAB) calcd for $C_{16}H_{11}F_{3}IN_{2}O$ (MH⁺) m/z_{1} 430.9868; found, 430.9867.

(7-Cyano-3-(2,2,2-trifluoroacetyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl Acetate (47) (Scheme 1). Method A. A solution of 45 (15.40 g, 35.8 mmol) in glacial acetic acid (300 mL) was treated with AgOAc (18.80 g, 112.6 mmol) and heated under reflux for 48 h. The mixture was cooled to room temperature and then evaporated to dryness, and the dark brown residue was dissolved in EtOAc, passed through a short pad of Celite, washed with water and brine, dried, and concentrated under reduced pressure. The residue was purified by chromatography eluting with petroleum ether/EtOAc (5:1, 4:1 and 3:1) to give 47 as a pale yellow solid (12.97 g, 100%): mp 158-160 °C. ¹H ŇMR [(CD₃)₂SO]: δ 8.64 (d, J = 1.3 Hz, 1H), 8.43 (d, J = 9.0 Hz, 1H), 8.21 (d, J = 8.7 Hz, 1H), 8.12 (d, J = 9.0 Hz, 1H), 7.87 (dd, J = 8.7, 1.6 Hz, 1H), 4.53 (dd, J = 10.8, 8.8 Hz, 1H), 4.46-4.36 (m, 2H), 4.35–4.29 (m, 1H), 4.28–4.22 (m, 1H), 1.89 (s, 3 H). ¹³C NMR $[(CD_3)_2SO]: \delta$ 170.0, 153.6 (q, $J_{CF} = 37$ Hz), 142.1, 135.0, 130.6, 130.3, 130.1, 127.5, 127.0, 125.1, 118.9, 118.0, 116.4 (q, $J_{CF} = 288 \text{ Hz})$, 107.7, 64.8, 52.2, 38.7, 20.3. Anal. calcd for C18H13F3N2O3: C, 59.67; H, 3.62; N, 7.73. Found: C, 59.72; H, 3.72; N, 7.81.

(7-Cyano-5-nitro-3-(2,2,2-trifluoroacetyl)-2,3-dihydro-1H-benzo-[e]indol-1-yl)methyl Acetate (57) and (7-Cyano-9-nitro-3-(2,2,2trifluoroacetyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl Acetate (56) (Scheme 1). Compound 47 (2.36 g, 6.51 mmol) was ground to a powder and dissolved in 98% $H_2 S \bar{O_4}~(20~mL)$ at $-10~^\circ C$ and stirred for 10 min. Anhydrous KNO3 (857 mg, 8.49 mmol) was added portion wise, and the mixture was stirred for a further 7 min, then poured into a beaker of ice water, and stirred for 10 min. The resulting precipitate was extracted with EtOAc (3×), and the combined organic layers were washed with water and brine, dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with petroleum ether/EtOAc (3:2) and further recrystallized from CH₂Cl₂/MeOH to give 57 as a yellow solid (1.72 g, 65%): mp 188–190 °C. ¹H NMR [(CD₃)₂SO]: δ 9.10 (s, 1H, H-4), 8.90 (d, I = 1.0 Hz, 1H, H-6), 8.44 (d, I = 8.7 Hz, 1H, H-9), 8.09 (dd, J = 8.8, 1.5 Hz, 1H, H-8), 4.59 (dd, J = 11.0, 9.1 Hz, 1H, H-2), 4.52–4.41 (m, 3H, H-1, H-2, CH₂OAc), 4.34 (dd, J = 11.0, 5.4 Hz, 1H, CH₂OAc), 1.88 (s, 3H, COCH₃). ¹³C NMR $[(CD_3)_2SO]: \delta$ 170.0 (COCH₃), 154.1 (q, $J_{CF} = 37$ Hz, COCF₃), 146.4 (C-5), 140.7 (C-3a), 134.1 (C-9b), 130.7 (C-9a), 130.1 (C-6), 128.9 (C-8), 126.2 (C-9), 121.6 (C-5a), 119.7 (CN), 118.3 (C-4), 115.5 (q, J_{CF} = 288 Hz, CF₃), 111.0 (C-7), 64.7 (CH₂OAc), 52.5 (C-2), 39.2 (C-1), 20.2 (COCH₃) (full assignments and 5-nitro structure determined by 2D NMR experiments: COSY, NOESY, HSOC, HMBC). Anal. calcd for C₁₈H₁₂F₃N₃O₅: C, 53.08; H, 2.97; N, 10.32. Found: C, 53.03; H, 2.93; N, 10.28; and 56 as a yellow solid (140 mg, 5%): mp 176–178 °C (MeOH). ¹H NMR [(CD₃)₂SO]: δ 9.00 (d, J = 1.6 Hz, 1H), 8.67 (d, J = 9.1 Hz, 1H), 8.62 (d, J = 1.6 Hz, 1H), 8.36 (d, J = 9.1 Hz, 1H), 4.55 (dd, J = 11.1, 8.5 Hz, 1H), 4.32-4.26 (m, 1H), 4.05 (dd, I = 11.1, 5.3 Hz, 1H), 3.96 (dd, I = 11.1, 5.8 Hz, 1H), 3.89-3.82 (m, 1H), 1.76 (s, 3H). ¹³C NMR [(CD₃)₂SO]: δ 169.6, 154.0 (q, J_{CF} = 37 Hz), 146.6, 145.5, 139.9, 132.3, 131.7, 125.3, 123.9, 122.0, 119.4, 117.0, 115.5 (q, J_{CF} = 288 Hz), 106.4, 65.3, 51.8, 39.6, 20.0. Anal. calcd for C18H12F3N3O5: C, 53.08; H, 2.97; N, 10.32. Found: C, 53.15; H, 3.01; N, 10.27.

1-(Hydroxymethyl)-5-nitro-2,3-dihydro-1H-benzo[e]indole-7-carbonitrile (58) (Scheme 1). A solution of 57 (320 mg, 0.79 mmol) in THF (20 mL) and water (6 mL) was treated with Cs₂CO₃ (768 mg, 2.36 mmol). The mixture was heated under reflux for 2 h, cooled to room temperature, treated with KOH (142 mg, 2.53 mmol) in water (1 mL), and heated under reflux for a further 3 h. The solution was concentrated under reduced pressure, and the residue was dissolved in EtOAc, washed with water and brine, dried, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using petroleum ether/EtOAc (1:1 then neat EtOAc) to give 58 as a red solid (206 mg, 97%): mp (EtOAc/petroleum ether) 206–209 °C. ¹H NMR [(CD₃)₂SO]: δ 8.55 (d, *J* = 1.4 Hz, 1H, H-6), 7.93 (d, *J* = 8.8 Hz, 1H, H-9), 7.75 (s, 1H, H-4), 7.70 (dd, J = 8.8, 1.6 Hz, 1H, H-8), 6.71 (s, 1H, NH), 4.99 (t, J = 5.5 Hz, 1H, OH), 3.88–3.76 (m, 2H, H-1, H-2), 3.71 (dd, J = 9.6, 2.5 Hz, 1H, H-2), 3.65-3.58 (m, 1H, CH₂OH), 3.51-3.42 (m, 1H, CH₂OH). ¹³C NMR [(CD₃)₂SO]: δ 151.8 (C-3a), 146.7 (C-5), 131.8 (C-9a), 129.8 (C-6), 127.3 (C-8), 127.0 (C-9b), 124.4 (C-9), 119.3 (CN), 116.7 (C-5a), 110.5 (C-4), 105.4 (C-7), 62.3 (CH₂OH), 50.2 (C-2), 43.5 (C-1) (full assignments and structure determined by 2D NMR experiments: COSY, NOESY, HSQC, HMBC). HRMS (EI) calcd for C₁₄H₁₁N₃O₃ (M+) m/z, 269.08004; found, 269.07969.

1-(Hydroxymethyl)-5-nitro-3-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-2,3-dihydro-1H-benzo[e]indole-7-carbonitrile (59) (Scheme 5). A mixture of 58 (101 mg, 0.38 mmol), 5,6,7-trimethoxy-1H-indole-2-carboxylic acid (123 mg, 0.49 mmol), anhydrous TsOH (71 mg, 0.42 mmol), and EDČI·HCl (0.29 g, 1.52 mmol) in dry dimethylacetamide (DMA) (2 mL) was stirred at room temperature for 17 h. Dilute aqueous NaHCO3 was added, and the mixture was stirred for several minutes. The precipitated solid was filtered off, washed with water, and dried in a vacuum desiccator. The solid was triturated with hot EtOAc to give 59 as a yellow solid (155 mg, 82%): mp 254–256 °C. ¹H NMR [(CD₃)₂SO]: δ 11.57 (d, J = 1.4 Hz, 1H), 9.26 (s, 1H), 8.87 (d, J = 1.1 Hz, 1H), 8.33 (d, J = 8.6 Hz, 1H), 7.98 (dd, J = 8.8, 1.5 Hz, 1H), 7.21 (d, J = 2.2 Hz, 1H), 6.98 (s, 1H), 5.06(t, J = 5.6 Hz, 1H), 4.86-4.79 (m, 1H), 4.65 (dd, J = 10.5, 2.3 Hz, 1H), 4.22-4.16 (m, 1H), 3.94 (s, 3H), 3.83 (s, 3H), 3.81 (s, 3H), 3.78-3.71 (m, 1H), 3.70-3.63 (m, 1H). Anal. calcd for C26H22N4O7·H2O: C, 60.00; H, 4.65; N, 10.76. Found: C, 59.94; H, 4.39; N, 10.75.

(7-Cyano-5-nitro-3-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-2,3dihydro-1H-benzo[e]indole-1-yl)methyl phenylmethanesulfonate (14) (Scheme 5). α -Toluenesulfonyl chloride (39 mg, 0.20 mmol) was added to a solution of 59 (85 mg, 0.17 mmol) in pyridine (2 mL) at 0 °C, and the mixture was stirred at this temperature for 10 min. More α -toluenesulfonyl chloride (19 mg, 0.10 mmol) was added, and after a further 20 min, ice-cold water (5 mL) was added. The mixture was stirred at 0 °C for 10 min, and then, the precipitated solid was filtered off, washed with water, and dried in a vacuum desiccator. The crude product was triturated with EtOAc at room temperature to give 14 as a yellow solid (85 mg, 77%): mp 219–222 °C. ¹H NMR [(CD₃)₂SO]: δ 11.62 (d, *J* = 1.6 Hz, 1H), 9.24 (s, 1H), 8.87 (d, *J* = 1.1 Hz, 1H), 8.31 (d, *J* = 8.8 Hz, 1H), 8.03 (dd, *J* = 8.8, 1.5 Hz, 1H), 7.23–7.12 (m, 6H), 6.98 (s, 1H), 4.92–4.86 (m, 1H), 4.62–4.49 (m, 6H), 3.94 (s, 3H), 3.84 (s, 3H), 3.82 (s, 3H). Anal. calcd for C₃₃H₂₈N₄O₉S·H₂O: C, 58.75; H, 4.48; N, 8.30. Found: C, 58.78; H, 4.28; N, 8.23.

tert-Butyl 7-Cyano-1-(hydroxymethyl)-5-nitro-1H-benzo[e]indole-3(2H)-carboxylate (**60**) (Scheme 5). A solution of **58** (187 mg, 0.69 mmol) in anhydrous THF (30 mL) and under N₂ was treated with di-*tert*-butyl dicarbonate (606 mg, 2.78 mmol). The mixture was heated under reflux for 24 h, cooled to room temperature, and then evaporated to dryness, and the residue was purified by column chromatography eluting with petroleum ether/EtOAc (4:1, 3:2 and 1:1) to give **60** as a yellow solid (171 mg, 67%): mp (petroleum ether/EtOAc) 107–111 °C. ¹H NMR [(CD₃)₂SO]: δ 8.87 (br, s, 1H), 8.82 (d, *J* = 1.1 Hz, 1H), 8.23 (d, *J* = 8.8 Hz, 1H), 7.93 (dd, *J* = 8.8, 1.5 Hz, 1H), 5.02 (m, 1H), 4.21–4.12 (m, 2H), 4.07–4.00 (m, 1H), 3.72–3.69 (m, 1H), 3.63–3.59 (m, 1H), 1.56 (s, 9H). Anal. calcd for C₁₉H₁₉N₃O₅·0.2EtOAc: C, 61.45; H, 5.37; N, 10.86. Found: C, 61.92; H, 5.77; N, 10.51.

tert-Butyl 1-(((Benzylsulfonyl)oxy)methyl)-7-cyano-5-nitro-1Hbenzo[e]indole-3(2H)-carboxylate (61) (Scheme 5). Compound 60 (170 mg, 0.46 mmol) was dissolved in CH₂Cl₂ (15 mL) and pyridine (149 μ L, 1.84 mmol), cooled to 0 °C, and then treated with α toluenesulfonyl chloride (263 mg, 1.38 mmol). The mixture was stirred at room temperature for a further 6 h, diluted with CH₂Cl₂, washed with water and brine, dried, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with petroleum ether/EtOAc (4:1) to give 61 as a yellow solid (201 mg, 83%): mp (petroleum ether/EtOAc) 139-141 °C. ¹H NMR $[(CD_3)_2SO]: \delta 8.82 (d, J = 1.2 Hz, 1H), 8.82 (br, s, 1H), 8.19 (d, J = 1.2 Hz, 1H), 8.19 (d,$ 8.8 Hz, 1H), 7.97 (dd, J = 8.8, 1.5 Hz, 1H), 7.34-7.22 (m, 5H), 4.65 (br, s, 2H), 4.47 (d, J = 2.0 Hz, 1H), 4.45 (br, s, 1H), 4.41-4.35 (m, J)1H), 4.27–4.22 (m, 1H), 4.08 (dd, J = 11.5, 2.7 Hz, 1H), 1.56 (s, 9H). Anal. calcd for C26H25N3O7S: C, 59.65; H, 4.81; N, 8.03. Found: C, 59.68; H, 4.92; N, 8.15. Preparation of this intermediate using Et₃N as a base was also successful, but a lower yield (64%) was obtained.

(7-Cvano-5-nitro-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl Phenylmethanesulfonate (62) (Scheme 5). A solution of 61 (200 mg, 0.38 mmol) in CH₂Cl₂ (10 mL) was treated with TFA (883 μ L, 11.5 mmol) and stirred overnight at room temperature. The mixture was then poured into a beaker of ice water and extracted with CH2Cl2 $(3\times)$, and the combined organic layers were washed with water and brine, dried, and concentrated under reduced pressure to give a red solid. The residue was purified by column chromatography eluting with petroleum ether/EtOAc (1:1) and further recrystallized from CH₂Cl₂/*i*-Pr₂O to give **62** as a red solid (120 mg, 75%): mp 154–156 °C. ¹H NMR [(CD₃)₂SO]: δ 8.55 (d, J = 1.1 Hz, 1H), 7.86 (d, J = 8.7 Hz, 1H), 7.77 (s, 1H), 7.75 (dd, J = 8.8, 1.6 Hz, 1H), 7.34–7.30 (m, 5H), 6.87 (br s, 1H), 4.69 (s, 2H), 4.30-4.29 (m, 2H), 4.22-4.15 (m, 1H), 3.86-3.80 (m, 1H), 3.63 (dd, J = 10.5, 2.5 Hz, 1H). Anal. calcd for C₂₁H₁₇N₃O₅S·0.2EtOAc: C, 59.37; H, 4.25; N, 9.53. Found: C, 59.07; H, 4.18; N, 9.59.

(7-Cyano-3-(5-(2-hydroxyethoxy)-1H-indole-2-carbonyl)-5-nitro-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl Phenylmethanesulfonate (**15**) (Scheme 5). A solution of **62** (39 mg, 0.09 mmol) in dry DMA (1 mL) was treated with anhydrous TsOH (17 mg, 0.10 mmol), 5-(2-hydroxyethoxy)-1H-indole-2-carboxylic acid (26 mg, 0.12 mmol), and EDCI-HCl (71 mg, 0.37 mmol). The mixture was stirred at room temperature for 2 h, then cooled to 0 °C, treated with 5% aqueous NaHCO₃, and stirred for further 10 min. The precipitate was collected by filtration, washed with cold water and small portions of ice-cold EtOAc, and then dried in a vacuum desiccator. The resulting solid was recrystallized from CH₂Cl₂/diethyl ether in a cold room (+5 °C) to give **15** as a yellow solid (30 mg, 53%): mp 239–242 °C. ¹H NMR [(CD₃)₂SO]: δ 11.74 (d, *J* = 1.6 Hz, 1H), 9.29 (s, 1H), 8.86 (d, *J* = 1.2 Hz, 1H), 8.32 (d, *J* = 8.8 Hz, 1H), 8.03 (dd, *J* = 8.8, 1.5 Hz, 1H), 7.44 (d, *J* = 8.9 Hz, 1H), 7.32–7.11 (m, 7H), 6.98 (dd, *J* = 8.9, 2.4 Hz, 1H), 4.95–4.90 (m, 1H), 4.84 (t, *J* = 5.5 Hz, 1H), 4.67–4.51 (m, 6H), 4.02 (t, *J* = 5.1 Hz, 2H), 3.76 (q, *J* = 5.3 Hz, 2H). Anal. calcd for C₃₂H₂₆N₄O₈S·0.5CH₂Cl₂: C, 58.34; H, 4.07; N, 8.37. Found: C, 58.10; H, 4.21; N, 8.53.

1-(Hydroxymethyl)-5-nitro-2,3-dihydro-1H-benzo[e]indole-7-carboxamide (63) (Scheme 1). A solution of 57 (1.71 g, 4.20 mmol) in DMSO (35 mL) was treated with H₂O₂ (10 mL, 35% aqueous solution, 103.4 mmol) and K₂CO₃ (2.10 g, 15.2 mmol). The mixture was stirred overnight at room temperature and then poured into a beaker of ice water and stirred for further 2 h. The solution was extracted with EtOAc $(3\times)$, and the combined organic layers were washed with water and brine and concentrated under reduced pressure. The residue was triturated with diethyl ether and dried in a vacuum oven (35 °C) for 48 h. Purification by column chromatography eluting with EtOAc/MeOH (20:1) followed by recrystallization from CH₂Cl₂/MeOH afforded 63 as dark red needles (910 mg, 75%): mp 219–221 °C. ¹H NMR [(CD₃)₂SO]: δ 8.63 (d, J = 1.3 Hz, 1H), 8.06 (br, s, 1H), 7.93 (dd, J = 8.9, 1.7 Hz, 1H), 7.83 (d, J = 8.8 Hz, 1H), 7.64 (s, 1H), 7.37 (br s, 1H), 6.38 (d, J = 1.4 Hz, 1H), 4.96 (t, J = 5.5 Hz, 1H), 3.87–3.80 (m, 1H), 3.78–3.62 (m, 3H), 3.47-3.39 (m, 1H). ¹³C NMR [(CD₃)₂SO]: δ 167.6, 150.4, 147.5, 131.8, 129.2, 126.7, 125.5, 123.4, 122.8, 117.3, 109.4, 62.1, 50.1, 43.9. Anal. calcd for C14H13N3O4: C, 58.53; H, 4.56; N, 14.63. Found: C, 58.26; H, 4.69; N, 14.40.

TLC and product analysis showed that the order of reaction was as follows: hydrolysis of the trifluoroacetamide, then nitrile, then acetate, to give sequentially more polar products. If the reaction was worked up at shorter times, the product with the acetate still intact could be isolated by column chromatography eluting with EtOAc to give (7-carbamoyl-5-nitro-2,3-dihydro-1*H*-benzo[*e*]indol-1-yl)methyl acetate as a red-orange solid: mp 211–214 °C. ¹H NMR [(CD₃)₂SO]: δ 8.63 (s, 1H), 8.08 (br, s, 1H), 7.97 (d, *J* = 8.8 Hz, 1H), 7.86 (d, *J* = 8.8 Hz, 1H), 7.67 (s, 1H), 7.40 (br, s, 1H), 6.49 (br, s, 1H), 4.28 (dd, *J* = 10.0, 4.4 Hz, 1H), 4.13–4.00 (m, 2H), 3.82–3.74 (m, 1H), 3.65–3.57 (m, 1H), 2.00 (s, 3H). ¹³C NMR [(CD₃)₂SO]: δ 170.3, 167.5, 150.5, 148.0, 131.8, 129.3, 125.9, 124.7, 123.4, 122.4, 117.3, 109.5, 63.9, 50.4, 39.9, 20.6. Anal. calcd for C₁₆H₁₅N₃O₅: C, 58.36; H, 4.59; N, 12.76. Found: C, 58.33; H, 4.66; N, 12.31.

1-(Hvdroxvmethvl)-5-nitro-3-(5.6.7-trimethoxv-1H-indole-2-carbonyl)-2,3-dihydro-1H-benzo[e]indole-7-carboxamide (64) (Scheme 6). A mixture of 63 (62 mg, 0.22 mmol), 5,6,7-trimethoxy-1H-indole-2-carboxylic acid (70 mg, 0.29 mmol), anhydrous TsOH (41 mg, 0.24 mmol), and EDCI·HCl (165 mg, 0.88 mmol) in dry DMA (1.5 mL) was stirred at room temperature for 16 h. Dilute aqueous NaHCO3 was added, and the brown suspension was stirred at room temperature for 20 min. The solid was filtered off, washed with aqueous NaHCO3 and then water, dried, and triturated with hot EtOAc to give 64 as a brown solid (87 mg, 77%): mp 242-246 °C (dec). ¹H NMR [(CD₃)₂SO]: δ 11.54 (s, 1H), 9.14 (s, 1H), 8.86 (d, J = 1.3 Hz, 1H), 8.26 (br, s, 1H), 8.22 (d, J = 8.8 Hz, 1H), 8.13 (dd, J = 8.8, 1.6 Hz, 1H), 7.58 (br s, 1H), 7.19 (s, 1H), 6.98 (s, 1H), 5.07 (t, J = 5.2 Hz, 1H), 4.84-4.76 (m, 1H), 4.65 (dd, J = 10.5, 2.2 Hz, 1H), 4.19-4.12 (m, 1H), 3.95 (s, 3H), 3.83 (s, 3H), 3.81 (s, 3H), 3.80-3.75 (m, 1H), 3.68–3.62 (m, 1H). Anal. calcd for $C_{26}H_{24}N_4O_8 \cdot H_2O$: C, 57.99; H, 4.87; N, 10.40. Found: C, 58.31; H, 4.75; N, 10.36.

(7-Carbamoyl-5-nitro-3-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl Phenylmethanesulfonate (17) (Scheme 6). α -Toluenesulfonyl chloride (62 mg, 0.32 mmol) was added to a solution of 64 (85 mg, 0.16 mmol) in pyridine (5 mL) at 0 °C, and the mixture was stirred at this temperature for 20 min. More α -toluenesulfonyl chloride (14 mg, 0.08 mmol) was added, and after a further 15 min, ice water (10 mL) was added. The mixture was stirred at 0 °C for several minutes, and the precipitated solid was filtered off, washed with water, and dried. The crude product was triturated with EtOAc to give 17 as a yellow-orange solid (53 mg, 49%): mp 164–168 °C. ¹H NMR [(CD₃)₂SO]: δ 11.67 (s, 1H), 9.14 (s, 1H), 8.86 (d, *J* = 1.1 Hz, 1H), 8.33 (br, s, 1H), 8.21 (d, *J* = 8.8 Hz, 1H), 8.15 (dd, *J* = 8.8, 1.5 Hz, 1H), 7.66 (br, s, 1H), 7.22–7.11 (m, 6H), 6.98 (s, 1H), 4.92–4.85 (m, 1H), 4.66–4.49 (m, 6H), 3.94 (s, 3H), 3.83 (s, 3H), 3.81 (s, 3H). Anal. calcd for C₃₃H₃₀N₄O₁₀S·0.5H₂O: C, 57.97; H, 4.57; N, 8.19. Found: C, 57.81; H, 4.51; N, 8.08.

tert-Butyl 7-Carbamoyl-1-(hydroxymethyl)-5-nitro-1H-benzo[e]indole-3(2H)-carboxylate (**67**) (Scheme 6). A solution of **63** (110 mg, 0.38 mmol) in dioxane (30 mL) and under N₂ was treated with ditert-butyl dicarbonate (498 mg, 2.28 mmol). The mixture was heated under reflux for 24 h and concentrated to dryness under reduced pressure. The residue was purified by column chromatography eluting with CH₂Cl₂/MeOH (19:1) followed by trituration with *i*-Pr₂O to give **67** as a yellow solid (97 mg, 66%): mp 199–201 °C. ¹H NMR [(CD₃)₂SO]: δ 8.82 (s, 1H), 8.72 (br, s, 1H), 8.21 (br, s, 1H), 8.11 (d, J = 8.8 Hz, 1H), 8.07 (dd, J = 8.8, 1.5 Hz, 1H), 7.54 (br, s, 1H), 5.01 (t, J = 5.5 Hz, 1H), 4.15 (br, s, 1H), 4.17 (br, s, 1H), 4.04–3.98 (m, 1H), 3.71–3.76 (m, 1H), 3.57–3.62 (m, 1H), 1.56 (s, 9H). Anal. calcd for C₁₉H₂₁N₃O₆·0.2MeOH·0.1*i*-Pr₂O: C, 58.89; H, 5.74; N, 10.41. Found: C, 58.86; H, 5.64; N, 10.03.

tert-Butyl 1-(((Benzylsulfonyl)oxy)methyl)-7-carbamoyl-5-nitro-1H-benzo[e]indole-3(2H)-carboxylate (68) (Scheme 6). Compound 67 (95 mg, 0.25 mmol) was dissolved in CH₂Cl₂ (10 mL) and Et₃N (101 μL, 0.65 mmol), cooled to 0 °C, treated with α-toluenesulfonyl chloride (124 mg, 0.65), and stirred for 20 min. The mixture was diluted with CH₂Cl₂, washed with water and brine, dried, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with CH₂Cl₂/MeOH (16:1) to give 68 as a yellow solid (128 mg, 95%): mp 173–175 °C. ¹H NMR [(CD₃)₂SO]: δ 8.82 (s, 1H), 8.73 (br, s, 1H), 8.25 (br, s, 1H), 8.13– 8.07 (m, 2H), 7.57 (br, s, 1H), 7.34–7.22 (m, 5H), 4.65 (br, s, 2H), 4.48 (br, s, 1H), 4.47 (br, s, 1H), 4.38–4.33 (m, 1H), 4.26–4.21 (m, 1H), 3.14 (dd, J = 11.4, 2.3 Hz, 1H), 1.56 (s, 9H). Anal. calcd for C₂₆H₂₇N₃O₈S: C, 57.66; H, 5.03; N, 7.76. Found: C, 57.79; H, 5.22; N, 7.46.

(E)-(7-Carbamoyl-3-(3(4-methoxyphenyl)acryloyl)-5-nitro-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl phenylsulfonate (19) (Scheme 6). Method A. Compound 66 (140 mg, 0.31 mmol) was dissolved in CH₂Cl₂ (6 mL) and pyridine (6 mL) at 38 °C in a warm water bath. The solution was cooled to 0 °C, treated with α -toluenesulfonyl chloride (298 mg, 1.56 mmol), and stirred for 10 min, then poured into a beaker of ice water. The precipitate was collected by filtration, washed with water, and dried in a vacuum desiccator. The residue was purified by column chromatography eluting with CH2Cl2/MeOH (99:1 and 49:1) and further triturated with small portions of CH₂Cl₂ and then ice-cold MeOH to provide 19 as a yellow solid (133 mg, 71%): mp 207–209 °C. ¹H NMR [(CD₃)₂SO]: δ 9.22 (s, 1H), 8.83 (s, 1H), 8.27 (br, s, 1H), 8.17-8.12 (m, 2H), 7.81-7.78 (m, 2H), 7.74 (d, J = 15.3 Hz, 1H), 7.59 (br, s, 1H), 7.26–7.21 (m, 5H), 7.07–7.02 (m, 3H), 4.66-4.59 (m, 3H), 4.56-4.51 (m, 4H), 3.83 (s, 3H). HRMS (FAB) calcd for $C_{31}H_{28}N_3O_8S$ (MH⁺) m/z, 602.1597; found, 602.1595. HPLC purity, 94.1%.

1-(Hydroxymethyl)-5-nitro-3-(2,2,2-trifluoroacetyl)-2,3-dihydro-1H-benzo[e]indole-7-carboxamide (**69**) (Scheme 1). A solution of **63** (586 mg, 2.04 mmol) in DMA (10 mL) was treated with anhydrous TsOH (386 mg, 2.24 mmol), TFA (616 μ L, 8.16 mmol), and EDCI-HCl (1.56 g, 8.14 mmol). The mixture was stirred at room temperature overnight, then cooled to 0 °C, treated with 5% aqueous NaHCO₃, and stirred for further 10 min. The resulting solution was poured into a beaker of ice water and extracted with EtOAc, and the combined organic layers were washed with brine, dried with Na₂SO₄, and concentrated under reduced pressure to give an orange solid. The solid was triturated with *i*-Pr₂O and small portions of cold diethyl ether to provide **69** as an orange solid (615 mg, 79%): mp 249–251 °C. ¹H NMR [(CD₃)₂SO]: δ 9.01 (s, 1H), 8.87 (d, *J* = 1.3 Hz, 1H), 8.29 (br, s, 1H), 8.28 (d, *J* = 8.9 Hz, 1H), 8.17 (dd, *J* = 8.8, 1.6 Hz, 1H), 7.62 (br, s, 1H), 5.05 (t, *J* = 5.4 Hz, 1H), 4.61–4.49 (m, 2H), 4.24–4.20 (m, 1H), 3.83–3.78 (m, 1H), 3.75–3.69 (m, 1H). Anal. calcd for $C_{16}H_{12}F_3N_3O_5$: C, 50.14; H, 3.16; N, 10.96. Found: C, 50.39; H, 3.45; N, 10.76.

1-(Hydroxymethyl)-5-nitro-3-(2,2,2-trifluoroacetyl)-2,3-dihydro-1H-benzo[e]indole-7-carboxylic acid (70) (Scheme 1). Compound 69 (288 mg, 0.75 mmol) was dissolved in TFA (10 mL) at room temperature, cooled to 0 °C in an ice water bath, and stirred for 5 min. The mixture was treated with NaNO₂ (569 mg, 8.25 mmol), further stirred for 10 min, and then poured into a beaker of ice water with stirring. The precipitate was collected by filtration, dissolved in EtOAc, washed with water and brine, dried, and concentrated under reduced pressure. The residue was triturated with small portions of cold CH₂Cl₂ to provide 70 as a yellow solid (241 mg, 84%): mp 246-250 °C. ¹H NMR [(CD₃)₂SO]: δ 13.44 (br s, 1H), 9.06 (s, 1H), 9.02 (d, J = 1.1 Hz, 1H), 8.28 (d, J = 8.8 Hz, 1H), 8.19 (dd, J = 8.8, 1.5 Hz, 1H), 5.06 (br, s, 1H), 4.63-4.49 (m, 2H), 4.24-4.21 (m, 1H), 3.83-3.80 (m, 1H), 3.74-3.70 (m, 1H). Anal. calcd for C16H11F3N2O6.0.1CH2Cl2: C, 49.24; H, 2.87; N, 7.13. Found: C, 49.32; H, 3.06; N, 7.39.

1-(Hydroxymethyl)-5-nitro-N-(2-((tetrahydro-2H-pyran-2-yl)oxy)ethyl)-3-(2,2,2-trifluoroacetyl)-2,3-dihydro-1H-benzo[e]indole-7carboxamide (71) (Scheme 1). A solution of 70 (110 mg, 0.29 mmol) in anhydrous THF (15 mL) was treated with DIPEA (150 μ L, 0.86 mmol) at room temperature. The solution was cooled to 0 °C and treated with 2-(tetrahydro-2H-2-pyranyloxy)ethanamine²⁶ (46 mg, 0.32 mmol) and PyBOP (194 mg, 0.37 mmol), stirred at room temperature for 1 h, and then evaporated to dryness. The residue was dissolved in EtOAc, washed with ice water and brine, dried, and concentrated under reduced pressure, and the crude product was purified by column chromatography eluting with diethyl ether/MeOH (24:1) to provide 71 as a yellow solid (110 mg, 74%): mp 122-124 °C. ¹H NMR [(CD₃)₂SO]: δ 9.01 (s, 1H), 8.87 (t, J = 5.4 Hz, 1H), 8.83 (d, J = 1.3 Hz, 1H), 8.27 (d, J = 8.9 Hz, 1H), 8.13 (dd, J = 8.8, 1.6 Hz, 1H), 5.05 (t, J = 5.4 Hz, 1H), 4.63 (t, J = 3.6 Hz, 1H), 4.58-4.48 (m, 2H), 4.23-4.20 (m, 1H), 3.83-3.69 (m, 4H), 3.59-3.49 (m, 3H), 3.46-3.40 (m, 1H), 1.78-1.72 (m, 1H), 1.66-1.61 (m, 1H), 1.50-1.43 (m, 4H). HRMS (ESI) calcd for $C_{23}H_{24}F_3N_3NaO_7$ (MNa⁺) m/z_1 534.1459; found, 534.1454.

1-(Hydroxymethyl)-5-nitro-N-(2-((tetrahydro-2H-pyran-2-yl)oxy)ethyl)-2,3-dihydro-1H-benzo[e]indole-7-carboxamide (**72**) (Scheme 1). A solution of **71** (160 mg, 0.31 mmol) in MeOH (16 mL) was cooled to 0 °C in an ice water bath and stirred for 10 min. The solution was then treated with Cs₂CO₃ (102 mg, 0.31 mmol), stirred for further 20 min, and then evaporated to dryness. The residue was purified by column chromatography eluting with CH₂Cl₂/MeOH (19:1) and followed by recrystallization from CH₂Cl₂ to provide **72** as a red solid (109 mg, 85%): mp (CH₂Cl₂) 119–121 °C. ¹H NMR [(CD₃)₂SO]: δ 8.61 (m, 1H), 8.59 (d, *J* = 1.1 Hz, 1H), 7.90 (dd, *J* = 8.9, 1.6 Hz, 1H), 7.85 (d, *J* = 8.9 Hz, 1H), 7.64 (s, 1H), 6.37 (d, *J* = 1.1 Hz, 1H), 4.95 (t, *J* = 5.5 Hz, 1H), 4.61 (t, *J* = 3.6 Hz, 1H), 3.86–3.62 (m, 6H), 3.57–3.52 (m, 1H), 3.49–3.40 (m, 4H), 1.80–1.71 (m, 1H), 1.66–1.60 (m, 1H), 1.50–1.42 (m, 4H). Anal. calcd for C₂₁H₂₅N₃O₆: C, 60.71; H, 6.07; N, 10.11. Found: C, 60.65; H, 6.13; N, 9.80.

1-(Hydroxymethyl)-5-nitro-N-(2-((tetrahydro-2H-pyran-2-yl)oxy)ethyl)-3-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-2,3-dihydro-1Hbenzo[e]indole-7-carboxamide (73) (Scheme 7). A solution of 72 (147 mg, 0.35 mmol) in DMA (2 mL) was treated with anhydrous TsOH (67 mg, 0.39 mmol), 5,6,7-trimethoxy-1H-indole-2-carboxylic acid (116 mg, 0.46 mmol), and EDCI·HCl (270 mg, 1.41 mmol). The mixture was stirred at room temperature for 2 h, then cooled to 0 °C, treated with 5% aqueous NaHCO₃, and stirred for a further 10 min. The precipitate was collected by filtration, washed with cold water, diethyl ether, and a small portion of cold MeOH, and then dried in a vacuum desiccator. The residue was triturated with diethyl ether to give 73 as a yellow solid (154 mg, 68%): mp 243-247 °C. ¹H NMR $[(CD_3)_2SO]: \delta 11.53 (d, J = 1.6 Hz, 1H), 9.14 (br, s, 1H), 8.83-8.81$ (m, 2H), 8.22 (d, J = 8.8 Hz, 1H), 8.09 (dd, J = 8.8, 1.5 Hz, 1H), 7.18 (d, J = 2.1 Hz, 1H), 6.98 (br, s, 1H), 5.06 (t, J = 5.6 Hz, 1H), 4.83-4.77 (m, 1H), 4.67-4.62 (m, 2H), 4.18-4.12 (m, 1H), 3.94 (s, 3H), 3.83 (s, 3H), 3.81 (s, 3H), 3.80-3.76 (m, 3H), 3.467-3.41 (m, 5H),

1.80–1.71 (m, 1H), 1.67–1.60 (m, 1H), 1.50–1.44 (m, 4H). HRMS (FAB) calcd for $C_{33}H_{36}N_4O_{10}$ (M⁺) m/z, 648.2431; found, 648.2423.

(5-Nitro-7-((2-((tetrahydro-2H-pyran-2-yl)oxy)ethyl)carbamoyl)-3-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-2,3-dihydro-1H-benzo-[e]indol-1-yl)methyl Phenylmethanesulfonate (75) (Scheme 7). A solution of 73 (137 mg, 0.21 mmol) in dry pyridine (10 mL) and was treated with α -toluenesulfonyl chloride (121 mg, 0.63 mmol) at 0 °C. The mixture was stirred for 10 min and then poured into a beaker of ice water and stirred for further 10 min. The solution was extracted with CH_2Cl_2 (3×), and the combined organic layers were washed with water and brine, dried, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with CH₂Cl₂/ MeOH (19:1 and 9:1) and further recrystallized from CH₂Cl₂/diethyl ether in cold room (+5 $^{\circ}$ C) to give 75 as a yellow solid (113 mg, 67%): mp (CH₂Cl₂/diethyl ether) 126-129 °C. ¹H NMR $[(CD_3)_2SO]: \delta 11.58 (d, J = 1.6 Hz, 1H), 9.13 (br, s, 1H), 8.85 (t, J)$ I = 5.4 Hz, 1H), 8.81 (d, I = 1.1 Hz, 1H), 8.21 (d, I = 8.8 Hz, 1H), 8.12 (dd, J = 8.8, 1.4 Hz, 1H), 7.21-7.12 (m, 6H), 6.98 (br, s, 1H), 4.90-4.85 (m, 1H), 4.64-4.53 (m, 7H), 3.94 (s, 3H), 3.84 (s, 3H), 3.82 (s, 3H), 3.80-3.75 (m, 2H), 3.60-3.42 (m, 4H), 1.80-1.71 (m, 1H), 1.67-1.61 (m, 1H), 1.50-1.45 (m, 4H). HRMS (FAB) calcd for $C_{40}H_{42}N_4O_{12}S(M^+) m/z$, 802.2520; found, 802.2526.

(7-((2-Hydroxyethyl)carbamoyl)-5-nitro-3-(5,6,7-trimethoxy-1Hindole-2-carbonyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl Phenylmethanesulfonate (22) (Scheme 7). A solution of 75 (28 mg, 0.035 mmol) in MeOH (2 mL) was treated with methane sulfonic acid (4 drops), stirred at room temperature for 1 h, and concentrated under reduced pressure. The residue was dissolved in CH2Cl2, washed with water and brine, dried, and concentrated under reduced pressure. The crude product (88% HPLC purity) was further purified by preparative HPLC (Synergi-Max RP column; flow rate, 14 mL/min; pump 1: H₂O/TFA, pH 2.5, gradient 60%-1%-1%-60%; pump 2: CH₃CN/ H₂O, 9:1, gradient 40%-99%-99%-40%) to provide 22 as a vellow solid (13 mg, 52%): mp 126–130 °C. ¹H NMR [(CD₃)₂SO]: δ 11.59 (d, J = 1.7 Hz, 1H), 9.12 (br, s, 1H), 8.82 (d, J = 1.2 Hz, 1H), 8.77 (t, J = 5.5 Hz, 1H), 8.21 (d, J = 8.8 Hz, 1H), 8.14 (dd, J = 8.8, 1.5 Hz, 1H), 7.23-7.12 (m, 6H), 6.98 (s, 1H), 4.90-4.85 (m, 1H), 4.75 (t, J = 5.6 Hz, 1H), 4.53 (m, 5H), 3.94 (s, 3H), 3.84 (s, 3H), 3.82 (s, 3H), 3.60-3.55 (m, 2H), 3.43-3.39 (m, 3H). HRMS (FAB) calcd for C₃₅H₃₅N₄O₁₁S (MH⁺) *m*/*z*, 719.2023; found, 719.2017. HPLC purity, 96.9%. Attempted deprotection of the THP group by TFA/CH₂Cl₂ (1:1) did not go to completion, and a byproduct was formed.

Methyl 6-(N,N-dibenzylsulfamoyl)-2-naphthoate (78) (Scheme 2). Solid KNO₃ (9.32 g, 92 mmol) and then SO₂Cl₂ (7.40 mL, 92 mmol) were added to a suspension of methyl 6-(dimethylcarbamoylthio)-2-naphthoate¹³ (77) (11.11 g, 38.4 mmol) in CH₃CN (250 mL) at 0 °C, and the mixture was stirred at this temperature for 3 h. More SO₂Cl₂ (7.40 mL, 92 mmol) was added, and after a further 30 min at 0 °C, the mixture was cautiously diluted with ice-cold aqueous NaHCO₃. The mixture was extracted with EtOAc, and the extract was washed with aqueous NaHCO3 and brine and then dried (MgSO4) and evaporated. The crude sulfonyl chloride (9.9 g, ca. 35 mmol) was dissolved in THF (100 mL), and Bn₂NH (8.0 mL, 41.8 mmol) and Et₃N (5.8 mL, 41.8 mmol) were added. The mixture was stirred at room temperature for 4 days, then diluted with aqueous HCl (2 N), and extracted with EtOAc. The EtOAc extract was washed with brine and then dried (MgSO₄) and evaporated. The resulting solid was triturated with hot MeOH (350 mL) to give 78 as a cream solid (5.65 g, 33%). ¹H NMR [(CD₃)₂SO]: δ 8.77 (s, 1H), 8.61 (d, J = 1.6 Hz, 1H), 8.37 (d, J = 8.8 Hz, 1H), 8.28 (d, J = 8.8 Hz, 1H), 8.13 (dd, J = 8.6, 1.7 Hz, 1H), 7.97 (dd, J = 8.7, 1.9 Hz, 1H), 7.22-7.15 (m, 6H), 7.13-7.06 (m, 4H), 4.39 (s, 4H), 3.96 (s, 3H). ¹H NMR analysis also showed the presence of some impurities, one of which was later identified as the corresponding 5-chloro analogue [methyl 5-chloro-6-(N,N-dibenzylsulfamoyl)-2-naphthoate]. An analytically pure sample of 78 was obtained by recrystallization from MeOH, mp 150–152 °C. Anal. calcd for C₂₆H₂₃NO₄S: C, 70.09; H, 5.20; N, 3.14. Found: C, 70.14; H, 5.10; N, 3.09. A second crop of 78 was obtained from the MeOH triturate (1.29 g, 8%).

6-(*N*,*N*-Dibenzylsulfamoyl)-2-naphthoic Acid (**79**) (Scheme 2). A solution of KOH (4.52 g, 81 mmol) in water (100 mL) was added to a suspension of ester **78** (6.92 g, 15.5 mmol) in MeOH (200 mL), and the mixture was stirred at reflux for 30 min, by which time all of the suspended solid had dissolved. The mixture was cooled and acidified with aqueous HCl (2 N, 60 mL) and then diluted with water. After the mixture was stirred overnight, the precipitated solid was filtered off, washed with water, and dried to give **79** as a white solid (6.21 g, 93%), mp 260–261 °C. ¹H NMR [(CD₃)₂SO]: δ 13.31 (br s, 1H), 8.74 (s, 1H), 8.60 (d, *J* = 1.5 Hz, 1H), 8.35 (d, *J* = 8.9 Hz, 1H), 8.25 (d, *J* = 8.8 Hz, 1H), 8.12 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.95 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.22–7.16 (m, 6H), 7.13–7.08 (m, 4H), 4.39 (s, 4H). Anal. calcd for C₂₅H₂₁NO₄S: C, 69.59; H, 4.91; N, 3.25. Found: C, 69.66; H, 4.98; N, 3.26.

tert-Butyl (6-(N,N-Dibenzylsulfamoyl)naphthalen-2-yl)carbamate (80) (Scheme 2). A mixture of acid 79 (6.21 g, 14.4 mmol), diphenylphosphoryl azide (DPPA; 3.41 mL, 15.8 mmol), and Et₃N (2.4 mL, 17.3 mmol) in dry tert-BuOH (100 mL) was stirred at reflux under a CaCl₂ drying tube for 17 h. The yellow solution was allowed to cool, and the tert-BuOH was evaporated. The residue was dissolved in CH₂Cl₂, and the solution was washed with dilute aqueous HCl (2x) and then brine. The CH_2Cl_2 layer was dried (MgSO₄), diluted with MeOH, and concentrated under reduced pressure until a solid began to precipitate. The mixture was allowed to stand at room temperature until precipitation was complete. The solid was filtered off and dried to give 80 as a cream solid (6.62 g, 92%). A sample was recrystallized from EtOAc/petroleum ether as a white solid, mp 191-193 °C. ¹H NMR [(CD₃)₂SO]: δ 9.80 (s, 1H), 8.39 (d, J = 1.6 Hz, 1H), 8.25 (d, J = 1.4 Hz, 1H), 8.04 (d, J = 9.0 Hz, 1H), 7.98 (d, J = 8.9 Hz, 1H), 7.78 (dd, J = 8.7, 1.9 Hz, 1H), 7.64 (dd, J = 8.9, 2.1 Hz, 1H), 7.22-7.16 (m, 6H), 7.12-7.07 (m, 4H), 4.34 (s, 4H), 1.53 (s, 9H). Anal. calcd for C29H30N2O4S: C, 69.30; H, 6.02; N, 5.57. Found: C, 69.05: H. 6.22: N. 5.61.

tert-Butyl (6-(N,N-Dibenzylsulfamoyl)-1-iodonaphthalen-2-yl)carbamate (81) (Scheme 2). Carbamate 80 (6.37 g, 12.7 mmol) was dissolved in CH₂Cl₂ (150 mL), and the solution was diluted with CH₃CN (120 mL). N-Iodosuccinimide (3.14 g, 14.0 mmol) and TsOH·H₂O (60 mg, 0.32 mmol) were added, and the resulting orange-brown solution was stirred at room temperature in the dark for 6 days. The solution was washed with aqueous $Na_2S_2O_5$ (10%), then dried (MgSO₄), and evaporated. The residue was dissolved in the minimum amount of CH2Cl2, and the solution was diluted with EtOAc and allowed to stand at room temperature. The precipitated solid was filtered off and dried to give 81 as a cream solid (3.16 g, 40%). A sample was recrystallized from EtOAc as a white solid, mp 194–195 °C. ¹H NMR [(CD₃)₂SO]: δ 8.94 (s, 1H), 8.52 (d, J = 1.9 Hz, 1H), 8.28 (d, J = 9.0 Hz, 1H), 8.14 (d, J = 8.7 Hz, 1H), 7.98 (dd, J = 9.0, 2.0 Hz, 1H), 7.76 (d, J = 8.8 Hz, 1H), 7.22–7.16 (m, 6H), 7.13-7.08 (m, 4H), 4.36 (s, 4H), 1.51 (s, 9H). Anal. calcd for C₂₉H₂₉IN₂O₄S: C, 55.42; H, 4.65; N, 4.46. Found: C, 55.42; H, 4.82; N, 4.55. The mother liquor was evaporated, and the residue was purified by column chromatography (eluting with EtOAc/petroleum ether/CH₂Cl₂, 10:75:15) and recrystallization (CH₂Cl₂/EtOAc) to give more 77 as a cream solid (3.09 g, 39%).

tert-Butyl Allyl(6-(N,N-dibenzylsulfamoyl)-1-iodonaphthalen-2yl)carbamate (82) (Scheme 2). Sodium hydride (60% dispersion in oil, 0.53 g, 13.3 mmol) was added to a solution of iodide 81 (6.43 g, 10.2 mmol) and allyl bromide (1.77 mL, 20.4 mmol) in dry DMF (100 mL) at 0 °C. The mixture was stirred at this temperature for 15 min and then allowed to warm to room temperature. After 2.5 h, the mixture was cooled again in an ice bath, ice-cold water (3 mL) was added, and the mixture was allowed to warm to room temperature once more. The solvent was evaporated under reduced pressure, and the residue was partitioned between EtOAc and brine. The aqueous layer was extracted again with EtOAc $(2\times)$, and the combined organic laver was washed with brine (3x) and then dried (MgSO₄) and evaporated to give 82 as a yellow foam (6.86 g, 100%). ¹H NMR $[(CD_3)_2SO]: \delta 8.58-8.53 \text{ (m, 1H)}, 8.33 \text{ (d, } J = 9.0 \text{ Hz}, 1\text{H}), 8.22-$ 8.15 (m, 1H), 8.00 (d, J = 8.6 Hz, 1H), 7.53 (d, J = 8.5 Hz, 1H), 7.23-7.04 (m, 10H), 6.05-5.90 (m, 1H), 5.19-5.02 (m, 2H), 4.58-4.31

(m, 5H), 4.06–3.88 (m, 1H), 1.51 and 1.29 (2 s, 9H). HRMS (FAB) calcd for $C_{32}H_{34}IN_2O_4S$ (MH+) m/z 669.12841; found, 669.12875.

tert-Butyl 7-(N,N-Dibenzylsulfamoyl)-1-(((2,2,6,6-tetramethylpiperidin-1-yl)oxy)methyl)-1H-benzo[e]indole-3(2H)-carboxylate (83) (Scheme 2). TEMPO (1.91 g, 12.2 mmol) was added to a solution of iodide 82 (6.86 g, 10.2 mmol) in dry benzene (350 mL) under nitrogen at room temperature. The mixture was stirred at reflux, and Bu₃SnH (97%, 3.29 mL, 12.2 mmol) was added dropwise over 5 min. After 10 min, the mixture was cooled to room temperature. The addition of TEMPO and Bu₃SnH was repeated under the same conditions a further two times until TLC analysis indicated complete consumption of the starting material. The mixture was evaporated, and the residue was purified by column chromatography (eluting with EtOAc/petroleum ether, 1:20 then 1:15 then 1:10). The productcontaining fractions were evaporated to dryness and triturated with MeOH. A small quantity of white solid was filtered off, and the filtrate was evaporated to give 83 as an orange oil-foam (7.00 g, 98%). ¹H NMR ($CDCl_3$): δ 8.31 (d, J = 1.7 Hz, 1H), 7.88 (d, J = 8.9 Hz, 1H), 7.80 (d, J = 8.9 Hz, 1H), 7.76 (dd, J = 8.9, 1.9 Hz, 1H), 7.23-7.17 (m, 6H), 7.11-7.06 (m, 4H), 4.36 (s, 4H), 4.31-4.24 (m, 1H), 4.17-4.11 (m, 1H), 4.05-3.98 (m, 1H), 3.93-3.86 (m, 2H), 1.61 (s, 9H), 1.45-1.26 (m, 6H), 1.15-0.94 (m, 12H), 1 proton not observed. HRMS (FAB) calcd. for $C_{41}H_{52}N_3O_5S$ (MH+) m/z, 698.36277; found, 698.362.56

Analysis of the white solid by ¹H NMR and MS showed that it consisted largely of the 6-chloro analogue [*tert*-butyl 6-chloro-7-(*N*,*N*-dibenzylsulfamoyl)-1-((2,2,6,6-tetramethylpiperidin-1-yloxy)methyl)-1H-benzo[e]indole-3(2H)-carboxylate] formed as an impurity in the chlorosulfonylation step. Compound **83** isolated as above was free of this impurity.

1-(((2,2,6,6-Tetramethylpiperidin-1-yl)oxy)methyl)-2,3-dihydro-1H-benzo[e]indole-7-sulfonamide (84) (Scheme 2). Ice-cold concentrated H₂SO₄ (20 mL) was added to dibenzylsulfonamide 83 (4.58 g, 6.56 mmol) cooled in an ice bath, and the mixture was stirred at 0 °C until TLC analysis indicated complete debenzylation of the sulfonamide (a total of 14 h, interrupted overnight when the reaction mixture was allowed to stand in the freezer). The mixture was poured into ice-cold water, EtOAc was added, and then concentrated NH₃ was cautiously added with stirring until the aqueous phase was alkaline. The mixture was extracted with EtOAc $(3\times)$, and the combined extracts were washed with brine $(2\times)$, then dried (MgSO₄), and evaporated. The residue was triturated with EtOAc to give 84 as a white solid (0.68 g, 22%), mp 199-201 °C (MeOH). ¹H NMR $[(CD_3)_2SO]: \delta 8.18 (d, J = 1.7 Hz, 1H), 7.77 (d, J = 8.6 Hz, 1H), 7.72$ (d, J = 8.9 Hz, 1H), 7.68 (dd, J = 8.9, 1.8 Hz, 1H), 7.22 (s, 2H), 7.04 (d, J = 8.6 Hz, 1H), 6.13 (d, J = 2.4 Hz, 1H), 3.90-3.82 (m, 2H),3.77-3.62 (m, 2H), 3.62-3.57 (m, 1H), 1.57-1.22 (m, 6H), 1.09 (s, 6H), 1.06 (s, 3H), 0.99 (s, 3H). Anal. calcd for $C_{22}H_{31}N_3O_3S{:}$ C, 63.28; H, 7.48; N, 10.06. Found: C, 63.50; H, 7.31; N, 10.07. The mother liquor was evaporated, and the residue was purified by column chromatography (eluting with EtOAc/petroleum ether, 1:2 then 1:1) to give more 84 (1.29 g, 42%).

tert-Butyl 7-Sulfamoyl-1-(((2,2,6,6-tetramethylpiperidin-1-yl)oxy)methyl)-1H-benzo[e]indole-3(2H)-carboxylate (**85**) (Scheme 2). A mixture of indoline **84** (1.97 g, 4.72 mmol) and di-tertbutyldicarbonate (4.12 g, 18.9 mmol) in THF (70 mL) was stirred at reflux for 16 h and then cooled to room temperature. The THF was evaporated, and the residue was purified by column chromatography (eluting with EtOAc/petroleum ether, 1:2) to give **85** as a cream solid (1.93 g, 79%), mp 200–202 °C (MeOH).; ¹H NMR [(CD₃)₂SO]: δ 8.35 (d, J = 1.8 Hz, 1H), 8.13 (v br s, 1H), 8.03 (d, J = 8.7 Hz, 1H), 8.01 (d, J = 8.8 Hz, 1H), 7.83 (dd, J = 8.9, 1.9 Hz, 1H), 7.34 (s, 2H), 4.23 (dd, J = 11.1, 1.4 Hz, 1H), 4.13–4.06 (m, 1H), 4.00–3.86 (m, 3H), 1.54 (s, 9H), 1.46–1.18 (m, 6H), 1.12 (s, 3H), 0.98 (s, 3H), 0.76 (s, 3H), 0.64 (s, 3H). Anal. calcd for C₂₇H₃₉N₃O₅S: C, 62.64; H, 7.59; N, 8.12. Found: C, 62.67; H, 7.35; N, 8.14.

tert-Butyl 1-(Hydroxymethyl)-7-sulfamoyl-1H-benzo[e]indole-3(2H)-carboxylate (**86**) (Scheme 2). A mixture of TEMPO adduct **85** (1.93 g, 3.73 mmol) and Zn powder (2.44 g, 37 mmol) in THF (40 mL), HOAc (30 mL), and H_2O (10 mL) was stirred at reflux. More Zn powder $(3 \times 2.4 \text{ g})$ was added after 7, 25, and 29 h, and more HOAc was added after 29 h. After a total of 33 h, TLC analysis showed complete consumption of the starting material. The mixture was cooled to room temperature, diluted with EtOAc, and filtered through Celite washing with EtOAc. The solvents were evaporated, the residue was dissolved in EtOAc, and the solution was washed with aqueous NaHCO3 and brine and then dried (MgSO4) and evaporated. The residue was purified by column chromatography (eluting with EtOAc/ petroleum ether, 1:2 then 1:1 then 2:1) to give 87 (152 mg, 10%, identical to the product from the following step) and 86 as a pale yellow solid (997 mg, 71%). A sample was triturated with CH₂Cl₂/ petroleum ether to give a white solid, mp 198-200 °C. ¹H NMR $[(CD_3)_2SO]: \delta 8.35$ (d, J = 1.8 Hz, 1H), 8.12 (v br s, 1H), 8.02 (d, J = 8.7 Hz, 2H), 7.84 (dd, J = 8.9, 1.9 Hz, 1H), 7.35 (s, 2H), 4.98 (t, J = 5.4 Hz, 1H), 4.17-4.04 (m, 2H), 3.91-3.83 (m, 1H), 3.78-3.70 (m, 1H), 3.51-3.40 (m, 1H), 1.55 (s, 9H). Anal. calcd for C18H22N2O5S.0.25H2O: C, 56.46; H, 5.92; N, 7.32. Found: C, 56.49; H, 5.66; N, 7.19.

tert-Butyl 1-(Acetoxymethyl)-7-sulfamoyl-1H-benzo[e]indole-3(2H)-carboxylate (87) (Scheme 2). Acetic anhydride (261 µL, 2.76 mmol) was added dropwise to a solution of alcohol 86 (997 mg, 2.63 mmol), Et₃N (0.73 mL, 5.3 mmol), and DMAP (3 mg, 0.03 mmol) in THF (60 mL), and the mixture was stirred at room temperature for 2 h. TLC analysis showed the presence of starting material, so more acetic anhydride (52 μ L, 0.53 mmol) was added. The mixture was stirred for a further 2 h, and then, the THF was evaporated. The residue was dissolved in EtOAc, and the solution was washed with aqueous HCl (1 N), aqueous NaHCO3, and brine, then dried (MgSO₄), and evaporated. The residue was purified by column chromatography (eluting with EtOAc/petroleum ether, 2:3 then 1:1) to give acetate 87 as a pale yellow solid (953 mg, 86%). A sample was recrystallized from CH₂Cl₂/petroleum ether as a white solid, mp 161-162 °C. ¹H NMR [(CD₃)₂SO]: δ 8.37 (d, J = 1.7 Hz, 1H), 8.17–8.01 (m, 3H), 7.87 (dd, J = 8.9, 1.9 Hz, 1H), 7.37 (s, 2H), 4.42-4.35 (m, 1H), 4.18-4.04 (m, 4H), 1.96 (s, 3H), 1.55 (s, 9H). Anal. calcd for C₂₀H₂₄N₂O₆S: C, 57.13; H, 5.75; N, 6.66. Found: C, 57.03; H, 5.79; N. 6.70.

Further elution (EtOAc/petroleum ether, 3:2) gave a sample that was shown by ¹H NMR and MS analysis to be a close-running mixture of recovered starting material (6%) and the corresponding diacetate [*tert*-butyl 1-(acetoxymethyl)-7-(*N*-acetylsulfamoyl)-1*H*-benzo[*e*]-indole-3(2*H*)-carboxylate, 5%]. Reaction with a larger excess of acetic anhydride gave a clean sample of this diacetate as a white foam. ¹H NMR [(CD₃)₂SO]: δ 12.08 (br s, 1H), 8.52 (d, *J* = 1.7 Hz, 1H), 8.17–8.13 (m, 2H), 8.08 (d, *J* = 8.9 Hz, 1H), 7.86 (dd, *J* = 8.9, 1.9 Hz, 1H), 4.44–4.36 (m, 1H), 4.18–4.03 (m, 4H), 1.96 (s, 3H), 1.91 (s, 3H), 1.55 (s, 9H). LRMS (APCI, -ve) calcd for C₂₂H₂₆N₂O₇S (M – H) *m*/*z*, 461; found, 461.5 (100%).

(7-Sulfamoyl-3-(2,2,2-trifluoroacetyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl Acetate (88) (Scheme 2). A solution of carbamate 87 (953 mg, 2.27 mmol) in HCl-dioxane (4 M, 20 mL) was stirred at room temperature for 2 h and then evaporated. The residue was partitioned between EtOAc and aqueous NaHCO3, and the aqueous layer was again extracted with EtOAc (6×). The combined EtOAc layers were dried (MgSO₄) and evaporated to give crude (7-sulfamoyl-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl acetate as a pale yellow solid (0.76 g). TLC analysis showed the presence of minor impurities that were not completely separated by attempted trituration (EtOAc) or column chromatography (eluting with EtOAc/petroleum ether, 2:3 then 3:2). The remaining apparently unstable material (614 mg, 85%) was used directly in the next step. ¹H NMR [(CD₃)₂SO]: δ 8.19 (d, J = 1.7 Hz, 1H), 7.82–7.77 (m, 2H), 7.73 (dd, J = 8.8, 1.9 Hz, 1H), 7.20 (s, 2H), 7.06 (d, J = 8.6 Hz, 1H), 6.18 (d, J = 2.4 Hz, 1H), 4.29-4.21 (m, 1H), 4.00-3.92 (m, 2H), 3.74-3.67 (m, 1H), 3.56-3.51 (m, 1H), 2.02 (s, 3H). LRMS (APCI, -ve) calcd for $C_{15}H_{16}N_2O_4S$ (M – H) m/ z, 319; found, 319.3 (80%), 212.3 (100%).

The crude indoline (614 mg, 1.92 mmol) and Et_3N (0.53 mL, 3.8 mmol) were dissolved in THF (30 mL), and the solution was cooled to 0 °C. TFAA (284 μ L, 2.02 mmol) was added dropwise, and the mixture was stirred at 0 °C. TLC analysis after 20 min indicated

incomplete reaction, so further portions of TFAA (a total of 204 μ L, 1.45 mmol) and Et₃N (0.27 mL, 1.9 mmol) were added over 3 h until the starting material was consumed. Ice-cold water and a slight excess of aqueous HCl (2 N) were added, and the THF was evaporated. The aqueous residue was warmed with EtOAc (100 mL) until all suspended solid dissolved, the EtOAc layer was separated, and the aqueous phase was extracted again with EtOAc (2x). The combined organic layers were washed with brine, dried (MgSO₄), and concentrated to a small volume. On standing at room temperature a solid separated which was filtered off and dried to give 88 as a light tan solid (543 mg, 68%), mp 200–202 °C. ¹H NMR [(CD₃)₂SO]: δ 8.47 (d, J = 1.7 Hz, 1H), 8.41 (d, J = 9.0 Hz, 1H), 8.24 (d, J = 8.9 Hz, 1H),8.19 (d, J = 9.0 Hz, 1H), 7.96 (dd, J = 8.8, 1.9 Hz, 1H), 7.45 (s, 2H), 4.57-4.51 (m, 1H), 4.47-4.37 (m, 2H), 4.36-4.25 (m, 2H), 1.89 (s, 3H). Anal. calcd for C₁₇H₁₅F₃N₂O₅S: C, 49.04; H, 3.63; N, 6.73. Found: C, 49.31; H, 3.71; N, 6.63. The mother liquor was evaporated, and the residue was purified by column chromatography (eluting with EtOAc/petroleum ether, 2:3) to give more 88 (200 mg, 21%).

(5-Nitro-7-sulfamoyl-3-(2,2,2-trifluoroacetyl)-2,3-dihydro-1Hbenzo[e]indol-1-yl)methyl Acetate (90) and (9-Nitro-7-sulfamoyl-3-(2,2,2-trifluoroacetyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl Acetate (89) (Scheme 2). Ice-cold concentrated H₂SO₄ (8 mL) was added to trifluoroacetamide 88 (730 mg, 1.75 mmol) cooled in an ice bath, and the mixture was stirred at this temperature for 20 min until all of the suspended solid had dissolved. Solid $\rm KNO_3$ (213 mg, 2.1 mmol) was added, giving a color change from brown to green to yellow-brown over several minutes. After 12 min at 0 °C, ice-cold water was added, and the mixture was extracted with EtOAc (2×). The combined extracts were washed with brine (2×) and then dried $(MgSO_4)$ and evaporated. The residue was dissolved in THF, and the solution was evaporated onto silica gel. Purification by column chromatography (eluting with EtOAc/petroleum ether, 1:2 then 1:1 then 3:2) gave 89 as a yellow solid (138 mg, 17%), mp 254-256 °C (MeOH). ¹H NMR [(CD₃)₂SO]: δ 8.81 (d, J = 1.8 Hz, 1H), 8.66 (d, J = 9.0 Hz, 1H), 8.51 (d, J = 9.1 Hz, 1H), 8.50 (d, J = 1.8 Hz, 1H), 7.69 (s, 2H), 4.56 (dd, J = 11.1, 8.5 Hz, 1H), 4.34-4.26 (m, 1H), 4.09-3.95 (m, 2H), 3.93-3.86 (m, 1H), 1.75 (s, 3H). Anal. calcd for C₁₇H₁₄F₃N₃O₇S: C, 44.26; H, 3.06; N, 9.11. Found: C, 44.55; H, 3.18; N, 8.89; and 90 as a yellow-orange solid (224 mg, 28%), mp 240-241 °C (MeOH). ¹H NMR [(CD₃)₂SO]: δ 9.10 (s, 1H), 8.89 (d, J = 1.5 Hz, 1H), 8.47 (d, J = 8.9 Hz, 1H), 8.12 (dd, J = 8.9, 1.7 Hz, 1H), 7.65 (s, 2H), 4.65-4.56 (m, 1H), 4.51-4.43 (m, 3H), 4.41-4.34 (m, 1H), 1.87 (s, 3H). Anal. calcd for C17H14F3N3O7S: C, 44.26; H, 3.06; N, 9.11. Found: C, 44.31; H, 3.11; N, 8.99.

1-(Hydroxymethyl)-5-nitro-2,3-dihydro-1H-benzo[e]indole-7-sulfonamide (91) (Scheme 2). Cs_2CO_3 (0.47 g, 1.5 mmol) was added to a solution of acetate 90 (224 mg, 0.49 mmol) in THF (10 mL) and MeOH (6 mL), and the mixture was stirred at room temperature for 1 h. During this time, the color changed from yellow to red-brown to brown, and a brown solid separated. The mixture was diluted with more MeOH, and the solid was filtered off. The solid was redissolved in a mixture of THF and EtOAc, and the solution was diluted with water. The mixture was concentrated to a small volume and allowed to stand at room temperature. The precipitated solid was filtered off and dried to give 91 as a red-brown solid (99 mg, 63%), mp 229-231 °C. ¹H NMR [(CD₃)₂SO]: δ 8.62 (d, J = 1.6 Hz, 1H), 7.98 (d, J = 8.9 Hz, 1H), 7.83 (dd, J = 9.0, 1.8 Hz, 1H), 7.74 (s, 1H), 7.39 (s, 2H), 6.53 (d, J = 1.2 Hz, 1H), 4.98 (t, J = 5.5 Hz, 1H), 3.90–3.82 (m, 1H), 3.80– 3.68 (m, 2H), 3.67-3.60 (m, 1H), 3.50-3.42 (m, 1H). Anal. calcd for C₁₃H₁₃N₃O₅S·0.5H₂O: C, 46.98; H, 4.25; N, 12.64. Found: C, 46.77; H, 4.44; N, 12.23.

1-(Hydroxymethyl)-5-nitro-3-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-2,3-dihydro-1H-benzo[e]indole-7-sulfonamide (**92**) (Scheme 8). A mixture of amine **91** (52 mg, 0.16 mmol), 5,6,7-trimethoxy-1Hindole-2-carboxylic acid (53 mg, 0.21 mmol), anhydrous TsOH (30 mg, 0.18 mmol), and EDCI-HCl (123 mg, 0.64 mmol) in dry DMA (2 mL) was stirred at room temperature for 19 h. Dilute aqueous NaHCO₃ was added, and the mixture was stirred at room temperature for 1 h. The precipitated solid was filtered off, washed with H₂O, dried, and triturated with EtOAc to give **92** as a yellow solid (72 mg, 80%), mp 280–285 °C (dec). ¹H NMR [$(CD_3)_2$ SO]: δ 11.56 (s, 1H), 9.26 (s, 1H), 8.88 (d, J = 1.6 Hz, 1H), 8.37 (d, J = 8.9 Hz, 1H), 8.05 (dd, J = 8.9, 1.7 Hz, 1H), 7.60 (s, 2H), 7.20 (s, 1H), 6.98 (s, 1H), 5.07 (t, J = 5.6 Hz, 1H), 4.87–4.79 (m, 1H), 4.66 (dd, J = 10.6, 2.2 Hz, 1H), 4.21–4.14 (m, 1H), 3.95 (s, 3H), 3.83 (s, 3H), 3.81 (s, 3H), 3.80–3.75 (m, 1H), 3.71–3.64 (m, 1H). Anal. calcd for C₂₅H₂₄N₄O₉S: C, 53.95; H, 4.35; N, 10.07. Found: C, 53.65; H, 4.56; N, 9.87.

(5-Nitro-7-sulfamoyl-3-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl Phenylmethanesulfonate (24) (Scheme 8). α -Toluenesulfonyl chloride (28 mg, 0.14 mmol) was added to a solution of alcohol 92 (62.5 mg, 0.11 mmol) in pyridine (10 mL) at 0 °C, and the mixture was stirred at this temperature for 20 min. More α -toluenesulfonyl chloride (28 mg, 0.14 mmol) was added, and after a further 20 min, ice-cold water was added. The mixture was stirred at 0 °C for several minutes, and the precipitated solid was filtered off and dried. ¹H NMR analysis indicated that the reaction had only proceeded to ca. 20% completion but that there was no competing elimination or reaction on the sulfonamide. The procedure was repeated using a large excess of α toluenesulfonyl chloride until TLC analysis showed complete conversion of the starting material. The crude product obtained was dissolved in THF, and the solution was evaporated onto silica gel. Purification by column chromatography (eluting with EtOAc/ petroleum ether, 1:1 then 3:1) followed by trituration with EtOAc gave 24 as a yellow-orange solid (44 mg, 55%), mp 243-247 °C (dec). ¹H NMR [(CD₃)₂SO]: δ 11.62 (d, J = 1.6 Hz, 1H), 9.24 (s, 1H), 8.86 (d, J = 1.7 Hz, 1H), 8.34 (d, J = 8.9 Hz, 1H), 8.07 (dd, J = 8.9, 1.7 Hz, 1H), 7.64 (s, 2H), 7.23-7.12 (m, 6H), 6.98 (s, 1H), 4.94-4.86 (m, 1H), 4.66-4.51 (m, 6H), 3.95 (s, 3H), 3.84 (s, 3H), 3.82 (s, 3H). Anal. calcd for C32H30N4O11S2: C, 54.08; H, 4.26; N, 7.88. Found: C, 54.28; H, 4.39; N, 7.68.

2,2,2-Trifluoro-1-(1-(iodomethyl)-1H-benzo[e]indol-3(2H)-yl)ethanone (**95**) (Scheme 3). A solution of NaI (7.19 g, 47.9 mmol) in 2-butanone (30 mL) was heated (85 °C) for 1 h. Compound 94¹³ (5.0 g, 16.0 mmol) was added, and the mixture was heated (85 °C) for 17 h after which EtOAc and water were added. The organic layer was washed with aqueous sodium disulfite (10%), water, and brine, dried (Na₂SO₄), and evaporated. The crude product was precipitated (EtOAc/petroleum ether) to give **95** (4.91 g, 76%) as a cream powder: mp 132–135 °C. ¹H NMR (CDCl₃): δ 8.42 (d, *J* = 9.0 Hz, 1H), 7.92 (d, *J* = 7.9 Hz, 1H), 7.89 (d, *J* = 8.9 Hz, 1H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.58 (td, *J* = 8.1, 1.1 Hz, 1H), 7.48 (td, *J* = 8.1, 1.1 Hz, 1H), 4.49 (d, *J* = 11.5 Hz, 1H), 4.43 (dd, *J* = 11.5, 8.2 Hz, 1H), 4.21 (tt, *J* = 9.8, 2.3 Hz, 1H), 3.65 (dd, *J* = 10.5, 2.3 Hz, 1H), 3.23 (t, *J* = 10.2 Hz, 1H). Anal. calcd for C₁₅H₁₁F₃INO: C, 44.47; H, 2.74; N, 3.46. Found: C, 44.74; H, 3.04; N, 3.41.

(3-(2,2,2-Trifluoroacetyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl Methanesulfonate (96) (Scheme 3). A solution of iodide 95 (3.6 g, 8.89 mmol) and AgOMs (10.8 g, 53.3 mmol) in CH₃CN (50 mL) was stirred in the dark for 24 h. CH₃CN was removed, EtOAc was added, and the mixture was filtered through Celite. After removal of EtOAc, the crude product was recrystallized (EtOAc/petroleum ether) to give 96 (3.15 g, 95%) as colorless crystals: mp 122–124 °C. ¹H NMR (CDCl₃) δ 8.43 (d, *J* = 9.0 Hz, 1H), 7.91 (d, *J* = 7.8 Hz, 1H), 7.88 (d, *J* = 8.8 Hz, 1H), 7.83 (dd, *J* = 8.3, 0.5 Hz, 1H), 7.61 (td, *J* = 8.2, 1.2 Hz, 1H), 7.51 (td, *J* = 8.1, 1.1 Hz, 1H), 4.65 (dd, *J* = 3.8, 0.6 Hz, 1H), 4.29 (td, *J* = 11.5, 1.4 Hz, 1H), 4.42 (dd, *J* = 11.5, 8.2 Hz, 1H), 4.29 (td, *J* = 8.2, 3.4 Hz, 1H), 4.14 (dd, *J* = 10.6, 9.1 Hz, 1H), 2.95 (s, 3H). Anal. calcd for C₁₆H₁₄F₃NO₄S: C, 51.47; H, 3.78; N, 3.75. Found: C, 51.77; H, 3.82; N, 3.86.

(7-(Chlorosulfonyl)-3-(2,2,2-trifluoroacetyl)-2,3-dihydro-1Hbenzo[e]indol-1-yl)methyl Methanesulfonate (97) (Scheme 3). A solution of mesylate 96 (1.40 g, 3.75 mmol) in CH_2Cl_2 (5 mL) was added dropwise to a cooled (-78 °C) solution of $ClSO_3H$ (1.74 g, 15.0 mmol) in CH_2Cl_2 (20 mL). The stirred mixture was allowed to warm to 15 °C over 12 h, producing a gray precipitate. The mixture was then cooled (0 °C). A minimum amount of DMF was slowly added to dissolve the precipitate, and oxalyl chloride (1.5 mL) was added dropwise. After 1 h, the mixture was poured into ice water. The system was extracted with cold EtOAc, and the organic portion was washed with cold water and cold brine and dried (Na₂SO₄). After filtration through a plug of Celite/silica gel and removal of EtOAc, the crude product was precipitated (CH₂Cl₂/*i*-Pr₂O) to give 97 (1.64 g, 94%) as a white powder: mp 169–172 °C. ¹H NMR [(CD₃)₂SO) δ 8.32 (d, *J* = 8.9 Hz, 1H), 8.21 (d, *J* = 1.4 Hz, 1H), 8.06 (d, *J* = 9.0 Hz, 1H), 8.00 (d, *J* = 8.7 Hz, 1H), 7.81 (dd, *J* = 8.7, 1.6 Hz, 1H), 4.58 (dd, *J* = 10.0, 3.2 Hz, 1H), 4.58–4.54 (m, 1H), 4.49–4.36 (m, 3H), 3.05 (s, 3H). HRMS calcd for C₁₆H₁₃³⁵ClF₃NO₆S₂ *m/z*, 470.9825; found, 470.9824; calcd for C₁₆H₁₃³⁵ClF₃NO₆S₂ *m/z*, 472.9795; found, 472.9801.

(7-(Chlorosulfonyl)-5-nitro-3-(2,2,2-trifluoroacetyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl Methanesulfonate (99) and (7-(Chlorosulfonyl)-9-nitro-3-(2,2,2-trifluoroacetyl)-2,3-dihydro-1Hbenzo[e]indol-1-yl)methyl Methanesulfonate (98) (Scheme 3). A cooled (0 $^{\circ}$ C) solution of KNO₃ (450 mg, 4.44 mmol) in 98% H₂SO₄ (2 mL) was added dropwise to a cooled (-5 °C) solution of 97 (1.90 g, 4.03 mmol) in 98% H_2SO_4 (30 mL). After 20 min at -5 °C, the mixture was poured into ice water and extracted with cold EtOAc. The organic layer was washed with cold water and cold brine and then dried (Na₂SO₄) and evaporated. The residue was purified by flash chromatography (petroleum ether/EtOAc; gradient, 100:0 to 2:3) followed by recrystallization (CH2Cl2/i-Pr2O) to give 99 (1.19 g, 57%) as a white powder: mp 180–182 °C. ¹H NMR (CDCl₂): δ 9.32 (s, 1H), 9.27 (d, J = 1.7 Hz, 1H), 8.27 (dd, J = 9.0, 1.8 Hz, 1H), 8.20 (d, J = 9.0 Hz, 1H), 4.71 (d, J = 11.6 Hz, 1H), 4.65-4.53 (m, 2H),4.47-4.40 (m, 1H), 4.24 (dd, J = 11.0, 8.2 Hz, 1H), 3.05 (s, 3H). Anal. calcd for C16H12ClF3N2O8S2: C, 37.18; H, 2.34; N, 5.42. Found: C, 37.05; H, 2.43; N, 5.31; and 98 (313 mg, 15%) as a white powder: mp 206–210 °C. ¹H NMR (CDCl₃): δ 8.93 (d, J = 9.1 Hz, 1H), 8.82 (d, J= 2.0 Hz, 1H), 8.40 (d, J = 2.0 Hz, 1H), 8.29 (d, J = 9.0 Hz, 1H), 4.55-4.50 (m, 2H), 4.19-4.04 (m, 3H), 2.95 (s, 3H). Anal. calcd for C16H12ClF3N2O8S2: C, 37.18; H, 2.34; N, 5.42. Found: C, 37.22; H, 2.35: N. 5.47.

(7-(N-(2-Hydroxyethyl)sulfamoyl)-5-nitro-2,3-dihydro-1H-benzo-[e]indol-1-yl/methyl Methanesulfonate (100) (Scheme 9). A solution of ethanolamine (46 mg, 0.76 mmol) in CH_2Cl_2 (0.5 mL) was added dropwise to a cooled $(0 \ ^{\circ}C)$ solution of 99 (130 mg, 0.25 mmol) in CH₂Cl₂ (10 mL). After 15 min at 0 °C, Cs₂CO₃ (164 mg, 0.50 mmol), MeOH (5 mL), and water (1 mL) were added. After a further 15 min, ice was added, and the mixture was poured into cold water/cold EtOAc. The organic layer was separated and then washed with cold water and cold brine, then dried (Na_2SO_4) , and evaporated to give 100 (100 mg, 89%). A portion was recrystallized (EtOAc/CH₂Cl₂) to give red crystals: mp 142–146 °C. ¹H NMR [(CD₃)₂SO]: δ 8.59 (d, J = 1.6 Hz, 1H), 8.0 (d, J = 9.0 Hz, 1H), 7.82 (dd, J = 9.0, 1.7 Hz, 1H), 7.79 (s, 1H), 7.69 (br s, 1H), 6.74 (d, J = 1.4 Hz, 1H), 4.63 (t, J = 5.6 Hz, 1H), 4.40-4.34 (m, 1H), 4.31-4.19 (m, 2H), 3.86 (td, J = 9.6, 2.0 Hz, 1H), 3.70 (dd, J = 9.9, 2.3 Hz, 1H), 3.36 (q, J = 5.8 Hz, 2H), 3.14 (s, 3H), 2.81 (t, J = 6.3 Hz, 2H). Anal. calcd for C16H19N2O8S2.0.1EtOAc: C, 43.36; H, 4.39; N, 9.25. Found: C, 43.09; H, 4.39; N, 8.91.

(7-(*N*-(2-Hydroxyethyl)sulfamoyl)-5-nitro-3-(5,6,7-trimethoxy-1Hindole-2-carbonyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl Methanesulfonate (**26**) (Scheme 9). A solution of EDCI-HCl (58 mg, 0.31 mmol), TsOH (3 mg, 0.02 mmol), TMI-2-carboxylic acid (25 mg, 0.10 mmol), and **100** (34 mg, 0.08 mmol) in DMA (1 mL) was stirred for 15 h. Cold 5% aqueous NaHCO₃ was added, and the precipitate was filtered and washed with cold water to give **26** (52 mg, 100%): mp 169–173 °C (dec.). ¹H NMR [(CD₃)₂SO]: δ 11.59 (s, 1H), 9.24 (s, 1H), 8.86 (s, 1H), 8.41 (d, *J* = 8.9 Hz, 1H), 8.03 (dd, *J* = 8.9, 1.5 Hz, 1H), 7.92 (t, *J* = 5.7 Hz, 1H), 4.96–4.85 (m, 1H), 4.71– 4.61 (m, 2H), 4.61–4.49 (m, 3H), 3.94 (s, 3H), 3.83 (s, 3H), 3.81 (s, 3H), 3.05 (s, 3H), 2.88 (q, *J* = 6.0 Hz, 2H), 2 protons not observed. Anal. calcd for C₂₈H₃₀N₄O₁₂S₂·0.25H₂O: C, 49.23; H, 4.50; N, 8.20. Found: C, 49.16; H, 4.43; N, 8.03.

(3-(2,2,2-Trifluoroacetyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl Acetate (109) (Scheme 4). Method D. A solution of 96 (2.0 g,4.94 mmol) and AgOAc (2.47 g, 14.8 mmol) in HOAc (50 mL) wasstirred in the dark for 48 h. EtOAc was added, and the mixture wasfiltered through Celite. The organic layer was washed with water andbrine, dried (Na₂SO₄), and evaporated. The residue was purified by flash chromatography (petroleum ether/EtOAc; gradient, 100:0 to 9:1) to give **109** (1.61 g, 97%) as a white powder.

(7-(Chlorosulfonyl)-3-(2,2,2-trifluoroacetyl)-2,3-dihydro-1Hbenzo[e]indol-1-yl)methyl Acetate (111) (Scheme 4). A solution of 109 (5.50 g, 16.3 mmol) in CH₂Cl₂ (40 mL) was added dropwise to a cooled (-80 °C) solution of ClSO₃H (7.57 g, 65.3 mmol) in CH₂Cl₂ (80 mL). The stirred mixture was allowed to warm to 5 °C over 5 h producing a gray precipitate. The mixture was kept at 5 °C overnight and then cooled $(-10^{\circ}C)$. A minimum amount of DMF was slowly added to dissolve the precipitate, oxalyl chloride (3 mL) was added dropwise, and the mixture was allowed to warm to 5 °C over 3 h. The mixture was poured into ice water and extracted with cold EtOAc, and the organic layer was separated and washed with cold water and cold brine, dried (Na_2SO_4) , and evaporated. After filtration through a plug of silica gel, the crude product was precipitated (CH₂Cl₂/*i*-Pr₂O) to give 111 (5.77 g, 81%). A portion was recrystallized (petroleum ether/ EtOAc) to give colorless crystals: mp 153-157 °C. ¹H NMR (CDCl₃) δ 8.64 (d, J = 8.6 Hz, 1H), 8.62 (d, J = 1.9 Hz, 1H), 8.16 (d, J = 9.0 Hz, 1H), 8.08 (2dd, J = 9.0, 2.1 Hz, 2H), 4.58 (dd, J = 11.4, 4.0 Hz, 1H), 4.53 (d, J = 11.4 Hz, 1H), 4.44 (dd, J = 11.3, 8.4 Hz, 1H), 4.24-4.16 (m, 1H), 4.02 (dd, J = 11.4, 8.3 Hz, 1H), 2.08 (s, 3H). Anal. calcd for C17H13ClF3NO5S.0.3EtOAc: C, 47.29; H, 3.36; N, 3.03. Found: C, 47.50; H, 3.09; N, 3.20.

(7-(Chlorosulfonyl)-5-nitro-3-(2,2,2-trifluoroacetyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl Acetate (113) and (7-(Chlorosulfonyl)-9-nitro-3-(2,2,2-trifluoroacetyl)-2,3-dihydro-1H-benzo[e]indol-1yl)methyl Acetate (112) (Scheme 4). A cooled (0 °C) solution of KNO3 (56 mg, 0.55 mmol) in 98% H2SO4 (0.5 mL) was added dropwise to a cooled (-12 °C) solution of 111 (200 mg, 0.46 mmol) in 98% H₂SO₄ (20 mL). After 15 min at -12 °C, the mixture was poured into ice water and extracted with cold EtOAc. The organic layer was separated and washed with cold water and cold brine, dried (Na_2SO_4) , and evaporated. The residue was purified by flash chromatography (petroleum ether/EtOAc; gradient, 100:0 to 3:2) followed by recrystallization (CH2Cl2/i-Pr2O) to give 113 (137 mg, 62%) as colorless crystals: mp 162–164 °C. ¹H NMR (CDCl₃): δ 9.33 (s, 1H), 9.28 (d, J = 1.6 Hz, 1H), 8.30 (d, J = 9.0 Hz, 1H), 8.22 (dd, J = 9.0, 1.9 Hz, 1H), 4.64-4.57 (m, 2H), 4.52 (dd, J = 11.3, 8.5 Hz, 1H), 4.34–4.27 (m, 1H), 4.07 (dd, J = 11.4, 7.8 Hz, 1H), 2.08 (s, 3H). Anal. calcd for C₁₇H₁₂ClF₃N₂O₇S: C, 42.47; H, 2.52; N, 5.83. Found: C, 42.32; H, 2.49; N, 5.57; and 112 (45 mg, 20%) as a white powder: mp 152–154 °C. ¹H NMR (CDCl₃) δ 8.89 (d, J = 9.0 Hz, 1H), 8.79 (d, J = 2.0 Hz, 1H), 8.41 (d, J = 2.0 Hz, 1H), 8.24 (d, J = 9.1 Hz, 1H),4.48 (dd, J = 11.1, 7.9 Hz, 1H), 4.39 (dt, J = 11.2, 1.4 Hz, 1H), 4.12-3.96 (m, 3H), 1.90 (s, 3H). Anal. calcd for C17H12ClF3N2O7S: C, 42.47; H, 2.52; N, 5.83. Found: C, 42.60; H, 2.46; N, 5.65.

N-(2-((tert-Butyldimethylsilyl)oxy)ethyl)-1-(hydroxymethyl)-5nitro-2,3-dihydro-1H-benzo[e]indole-7-sulfonamide (114) (Scheme 4). A solution of TBDMSO $(CH_2)_2NH_2$ (142 mg, 0.81 mmol)²⁷ and DIPEA (242 mg, 1.88 mmol) in CH₂Cl₂ (2 mL) was added dropwise to a cooled (0 $^{\circ}$ C) solution of 113 (300 mg, 0.63 mmol) in CH₂Cl₂ (15 mL). After 20 min at 0 °C, Cs₂CO₃ (400 mg, 1.23 mmol), MeOH (5 mL), and water (1 mL) were added. After a further 30 min, a further portion of Cs₂CO₃ (400 mg, 1.23 mmol) was added, and the mixture was allowed to warm to room temperature over 2 h. The mixture was poured into water/EtOAc, and the organic layer was separated and washed with cold water and cold brine and dried (Na₂SO₄). Filtration through a silica gel plug followed by removal of EtOAc and trituration (petroleum ether) gave 114 (280 mg, 93%) as a red oil. ¹H NMR [(CD₃)₂SO]: δ 8.60 (d, J = 1.6 Hz, 1H), 7.97 (d, J = 9.0 Hz, 1H), 7.77 (dd, J = 9.0, 1.7 Hz, 1H), 7.77-7.71 (m, 2H), 6.57 (s, 1H), 4.98 (t, J = 5.4 Hz, 1H), 3.88-3.82 (m, 1H), 3.79-3.68 (m, 2H), 3.66-3.61 (m, 1H), 3.52 (t, J = 6.3, 2H), 2.85 (q, J = 6.1 Hz, 2H), 0.78 (s, 9H), -0.05 (s, 6H). HRMS (FAB) calcd for C₂₁H₃₂N₃O₆SSi m/z, 482.1781; found, 482.1786.

N-(2-((tert-Butyldimethylsilyl)oxy)ethyl)-1-(hydroxymethyl)-5nitro-3-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-2,3-dihydro-1Hbenzo[e]indole-7-sulfonamide (115) (Scheme 10). A solution of EDCI-HCl (64 mg, 0.33 mmol), TsOH (3 mg, 0.02 mmol), TMI-2carboxylic acid (25 mg, 0.10 mmol), and 114 (40 mg, 0.08 mmol) in DMA (2 mL) was stirred for 1.5 h. Further portions of EDCI-HCl (15 mg, 0.08 mmol), TsOH (2 mg, 0.01 mmol), and TMI-2-carboxylic acid (5 mg, 0.01 mmol) were added, and after 2 h, cold 5% aqueous NaHCO₃ was added, and the precipitate was filtered and washed with cold water. The residue was purified by trituration (Et₂O) followed by precipitation (CH₂Cl₂/MeOH) to give **115** (55 mg, 92%) as a yellow powder: mp 233–237 °C. ¹H NMR [(CD₃)₂SO]: δ 11.56 (s, 1H), 9.27 (s, 1H), 8.87 (d, *J* = 1.6 Hz, 1H), 8.36 (d, *J* = 8.9 Hz, 1H), 8.01 (dd, *J* = 8.9, 1.6 Hz, 1H), 7.97 (br s, 1H), 7.20 (d, *J* = 2.0 Hz, 1H), 6.98 (s, 1H), 5.07 (t, *J* = 5.5 Hz, 1H), 4.82 (t, *J* = 10.2 Hz, 1H), 4.67 (dd, *J* = 10.5, 2.0 Hz, 1H), 4.21–4.13 (m, 1H), 3.94 (s, 3H), 3.83 (s, 3H), 3.81 (s, 3H), 3.80–3.74 (m, 1H), 3.69–3.62 (m, 1H), 3.56 (t, *J* = 6.1 Hz, 2H), 2.96–2.85 (m, 2H), 0.80 (s, 9H), -0.03 (s, 6H). Anal. calcd for C₃₄H₄₂N₄O₁₀SSi-0.5H₂O: C, 55.50; H, 5.89; N, 7.61. Found: C, 55.44; H, 6.00; N, 7.95.

(7-(N-(2-((tert-Butyldimethylsilyl)oxy)ethyl)sulfamoyl)-5-nitro-3-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl Phenylmethanesulfonate (119) (Scheme 10). α -Toluenesulfonyl chloride (42 mg, 0.22 mmol) was added to a cooled (0 °C) solution of 115 (40 mg, 0.06 mmol) in N₂-purged dry pyridine (4 mL). After 1 h, a further portion of α -toluenesulfonyl chloride (84 mg, 0.44 mmol) was added, and after 1 h at 0 °C, ice water was added, and the precipitate was filtered and washed with cold water and Et₂O to give 119 (37 mg, 76%) as a yellow powder: mp 114-117 °C. ¹H NMR $[(CD_3)_2SO]$: δ 11.62 (s, 1H), 9.25 (s, 1H), 8.85 (d, J = 1.6 Hz, 1H), 8.34 (d, J = 8.9 Hz, 1H), 8.02 (dd, J = 8.9, 1.7 Hz, 1H), 7.99 (t, J = 5.8 Hz, 1H), 7.25-7.09 (m, 6H), 6.98 (s, 1H), 4.89 (t, J = 9.3 Hz, 1H), 4.66-4.56 (m, 3H), 4.56-4.48 (m, 3H), 3.94 (s, 3H), 3.84 (s, 3H), 3.82 (s, 3H), 3.57 (t, J = 6.2 Hz, 2H), 2.91 (q, J = 6.0 Hz, 2H), 0.80 (s, 9H), -0.03 (s, 6H). Anal. calcd for $C_{41}H_{48}N_4O_{12}S_2Si \cdot 0.5H_2O$: C, 55.33; H, 5.55; N, 6.30. Found: C, 55.32; H, 5.56; N, 6.24.

(7-(N-(2-Hydroxyethyl)sulfamoyl)-5-nitro-3-(5,6,7-trimethoxy-1Hindole-2-carbonyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl Phenylmethanesulfonate (29) (Scheme 10). TFA (0.5 mL) was added dropwise to a solution of 119 (34 mg, 0.04 mmol) in CH₂Cl₂ (2 mL) and MeOH (0.5 mL). After 30 h, solvents were removed, and the residue was triturated (petroleum ether/Et₂O) to give 29 (29 mg, 100%). Further purification by preparative HPLC (Synergi-Max RP column; flow rate, 15 mL/min; pump 1: H₂O/TFA, pH 2.5, gradient 80%-5%-80%; pump 2: CH₃CN/H₂O, 9:1, gradient 20%-95%-20%) gave a yellow powder (99.9% purity): mp 191-193 °C. ¹H NMR $[(CD_3)_2SO]: \delta$ 11.61 (s, 1H), 9.25 (s, 1H), 8.85 (s, 1H), 8.34 (d, J = 8.9 Hz, 1H), 8.03 (d, J = 8.5 Hz, 1H), 7.92 (br s, 1H), 7.24-7.10 (m, 6H), 6.98 (s, 1H), 4.94-4.84 (m, 1H), 4.68 (t, J = 5.5 Hz, 1H), 4.64-4.50 (m, 6H), 3.95 (s, 3H), 3.85 (s, 3H), 3.82 (s, 3H), 3.40 (q, J = 5.8 Hz, 2H), 2.87 (q, J = 5.7 Hz, 2H). HRMS (FAB) calcd for C₃₄H₃₅N₄O₁₂S₂ m/z, 755.1693; found, 755.1699.

Synthesis of Compounds in Table 3 and Their Intermediates. Di-tert-butyl (2-((2-(7-Carbamoyl-1-(hydroxymethyl)-5-nitro-2,3-dihydro-1H-benzo[e]indole-3-carbonyl)-1H-indol-5-yl)oxy)ethyl) Phosphate (123) (Scheme 11). A solution of 63 (110 mg, 0.38 mmol) in DMA (3 mL) was treated with anhydrous TsOH (72 mg, 0.42 mmol), 5-(2-((di-tert-butoxyphosphoryl)oxy)ethoxy)-1H-indole-2-carboxylic acid¹⁴ (207 mg, 0.50 mmol), and EDCI·HCl (300 mg, 1.57 mmol). The mixture was stirred at room temperature for 4 h, then cooled to 0 °C, treated with 5% aqueous NaHCO₃ (10 mL), and stirred for further 10 min. The precipitate was collected by filtration, washed with cold water and small portions of ice-cold EtOAc, and then dried in a vacuum desiccator. The residue was triturated with diethyl ether to give **123** as a yellow solid (140 mg, 54%): mp 206–210 °C. ¹H NMR [(CD₃)₂SO]: δ 11.71 (d, J = 1.7 Hz, 1H), 9.19 (s, 1H), 8.85 (d, J = 1.3 Hz, 1H), 8.25 (br, s, 1H), 8.22 (d, *I* = 8.9 Hz, 1H), 8.13 (dd, *J* = 8.8, 1.5 Hz, 1H), 7.57 (br, s, 1H), 7.43 (d, J = 8.9 Hz, 1H), 7.20 (dd, J = 8.1, 1.7 Hz, 2H), 6.96 (dd, J = 8.9, 2.4 Hz, 1H), 5.06 (t, J = 5.6 Hz, 1H), 4.84 (t, J =10.3 Hz, 1H), 4.72 (dd, J = 10.4, 2.1 Hz, 1H), 4.22-4.18 (m, 5H), 3.78 (m, 1H), 3.70-3.64 (m, 1H), 1.43 (s, 18H). HRMS (FAB) calcd for $C_{33}H_{39}N_4O_{10}P$ (M⁺) m/z, 682.2404; found, 682.2405.

(7-Carbamoyl-3-(5-(2-((di-tert-butoxyphosphoryl)oxy)ethoxy)-1H-indole-2-carbonyl)-5-nitro-2,3-dihydro-1H-benzo[e]indol-1-yl)- *methyl Phenylmethanesulfonate* (**124**) (Scheme 11). A solution of **123** (100 mg, 0.15 mmol) in dry pyridine (3 mL) was treated with α -toluenesulfonyl chloride (140 mg, 0.73 mmol) at 0 °C. The mixture was stirred for 1 h and then poured into a beaker of ice water and stirred for further 10 min. The solution was extracted with CH₂Cl₂ (3×), and the combined organic layers were washed with water and brine, dried, and concentrated under reduced pressure. The residue was triturated with diethyl ether to give **124** as a yellow solid (43 mg, 34%): mp 166–170 °C. ¹H NMR [(CD₃)₂SO]: δ 11.75 (d, *J* = 1.7 Hz, 1H), 9.18 (s, 1H), 8.85 (d, *J* = 1.2 Hz, 1H), 8.29 (br, s, 1H), 8.22 (d, *J* = 8.8 Hz, 1H), 8.16 (dd, *J* = 8.8, 1.4 Hz, 1H), 7.61 (br, s, 1H), 7.45 (d, *J* = 8.9 Hz, 1H), 7.20–7.11 (m, 7H), 6.97 (dd, *J* = 8.9, 2.4 Hz, 1H), 4.93–4.91 (m, 1H), 4.66–4.55 (m, 6H), 4.22–4.20 (m, 4H), 1.43 (s, 18H). HRMS (FAB) calcd for C₄₀H₄₅N₄O₁₂ PS (M⁺) *m/z*, 836.2492; found, 836.2497.

(7-Carbamoyl-5-nitro-3-(5-(2-(phosphonooxy)ethoxy)-1H-indole-2-carbonyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl phenylmethanesulfonate (**33**) (Scheme 11). A solution of **124** (40 mg, 0.05 mmol) in CH₂Cl₂ (2 mL) was treated with TFA (41 μ L, 0.53 mmol), stirred at room temperature for 24 h, and then concentrated under reduced pressure. The residue was repeatedly dissolved in CH₂Cl₂ and then concentrated to remove the excess TFA. The crude product was triturated with diethyl ether to give **33** as a yellow solid (26 mg, 72%): mp 191–194 °C. ¹H NMR [(CD₃)₂SO]: δ 11.74 (s, 1H), 11.20 (br, s, 1H), 9.18 (s, 1H), 8.85 (d, *J* = 1.0 Hz, 1H), 8.28 (br, s, 1H), 8.21 (d, *J* = 8.8 Hz, 1H), 8.16 (dd, *J* = 8.8, 1.3 Hz, 2H), 7.61 (br, s, 1H), 7.45 (d, *J* = 8.9 Hz, 1H), 7.21–7.11 (m, 6H), 6.99 (dd, *J* = 8.9, 2.3 Hz, 1H), 4.94–4.90 (m, 1H), 4.66–4.55 (m, 6H), 4.19–4.13 (m, 4H), 2 protons not observed. HRMS (ESI) calcd for C₃₂H₂₈N₄O₁₂PS (MH⁻) *m*/*z*, 723.1168; found, 723.1157. HPLC purity, 99.7%.

Di-tert-butyl (2-(1-(Hydroxymethyl)-5-nitro-3-(2,2,2-trifluoroacetyl)-2,3-dihydro-1H-benzo[e]indole-7-carbonylamino)ethyl) Phosphate (125) (Scheme 12). A solution of 70 (120 mg, 0.31 mmol) in anhydrous THF (15 mL) was treated with DIPEA (160 μ L, 0.86 mmol) at room temperature. The mixture was cooled to 0 °C, treated with 2-aminoethyl di(tert-butyl) phosphate¹⁴ (153 mg, 0.64 mmol) and PyBOP (211 mg, 0.41 mmol), and stirred at room temperature for 1 h. The mixture was evaporated to dryness, and the residue was dissolved in EtOAc, washed with ice-cold water and brine, dried, and concentrated under reduced pressure. The crude product was purified by column chromatography eluting with diethyl ether/MeOH (24:1) to provide 125 as a yellow solid (190 mg, 99%): mp 76-79 °C. ¹H NMR [(CD₃)₂SO]: δ 9.00 (s, 1H), 8.98 (t, J = 5.5 Hz, 1H), 8.84 (d, J = 1.3 Hz, 1H), 8.28 (d, J = 8.8 Hz, 1H), 8.15 (dd, J = 8.8, 1.6 Hz, 1H), 5.05 (t, J = 5.4 Hz, 1H), 4.58-4.49 (m, 2H), 4.23-4.21 (m, 1H), 4.03 (q, J = 5.9 Hz, 2H), 3.83-3.78 (m, 1H), 3.75-3.69 (m, 1H), 3.56 (q, J 5.7 Hz, 2H), 1.39 (s, 18H). HRMS (ESI) calcd for C₂₆H₃₃F₃N₃NaO₉P (MNa⁺) m/z, 642.1799; found, 642.1792.

Di-tert-butyl (2-(1-(Hydroxymethyl)-5-nitro-2,3-dihydro-1Hbenzo[e]indole-7-carbonylamino)ethyl) Phosphate (126) (Scheme 12). A solution of 125 (100 mg, 0.16 mmol) in MeOH (10 mL) was cooled to 0 °C in an ice water bath and stirred for 10 min. The mixture was then treated with Cs₂CO₃ (53 mg, 0.16 mmol), stirred for a further 30 min, and then evaporated to dryness. The residue was purified by column chromatography eluting with CH₂Cl₂/MeOH (49:1 and 48:1) to provide 126 as a red gum (83 mg, 99%). ¹H NMR [(CD₃)₂SO]: δ 8.73 (t, *J* = 5.5 Hz, 1H), 8.60 (d, *J* = 1.3 Hz, 1H), 7.91 (dd, *J* = 8.9, 1.6 Hz, 1H), 7.85 (d, *J* = 8.8 Hz, 1H), 7.63 (s, 1H), 7.39 (s, 1H), 4.95 (t, *J* = 5.4 Hz, 1H), 4.00 (q, *J* = 6.0 Hz, 2H), 3.86–3.82 (m, 1H), 3.76–3.63 (m, 3H), 3.52 (q, *J* = 5.6 Hz, 2H), 3.46–3.41 (m, 1H), 1.39 (s, 18H). HRMS (FAB) calcd for C₂₄H₃₄N₃O₈P (M⁺) *m/z*, 523.2084; found, 523.2083.

Di-tert-butyl (2-(1-(Hydroxymethyl)-5-nitro-3-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-2,3-dihydro-1H-benzo[e]indole-7carbonylamino)ethyl) Phosphate (127) (Scheme 12). A solution of 126 (142 mg, 0.27 mmol) in DMA (3 mL) was treated with anhydrous TsOH (51 mg, 0.30 mmol), 5,6,7-trimethoxy-1H-indole-2carboxylic acid (88 mg, 0.35 mmol), and EDCI-HCl (206 mg, 1.08 mmol). The mixture was stirred at room temperature for 2 h, then cooled to 0 °C, treated with 5% aqueous NaHCO₃, and stirred for further 10 min. The precipitate was collected by filtration, washed with cold water and *i*-Pr₂O, and then dried in a vacuum desiccator to give **127** as a yellow solid (140 mg, 69%): mp 150–154 °C.; ¹H NMR [(CD₃)₂SO]: δ 11.53 (d, *J* = 1.8 Hz, 1H), 9.14 (br, s, 1H), 8.94 (t, *J* = 5.4 Hz, 1H), 8.83 (d, *J* = 1.3 Hz, 1H), 8.23 (d, *J* = 8.8 Hz, 1H), 8.11 (dd, *J* = 8.8, 1.5 Hz, 1H), 7.19 (d, *J* = 2.3 Hz, 1H), 6.98 (br, s, 1H), 5.06 (t, *J* = 5.5 Hz, 1H), 4.80 (t, *J* = 10.4 Hz, 1H), 4.66 (dd, *J* = 10.6, 2.1 Hz, 1H), 4.18–4.12 (m, 1H), 4.03 (m, 2H), 3.94 (s, 3H), 3.83 (s, 3H), 3.81 (s, 3H), 3.80–3.76 (m, 1H), 3.68–3.61 (m, 1H), 3.59–3.52 (m, 2H), 1.40 (s, 18H). HRMS (ESI) calcd for C₃₆H₄₅N₄NaO₁₂P (MNa⁺) *m/z*, 779.2664; found, 779.2684.

(7-((2-((Di-tert-butoxyphosphoryl)oxy)ethyl)carbamoyl)-5-nitro-3-(5,6,7-trimethoxy-1H-indole-2-carbonyl)- 2,3-dihydro-1H-benzo-[e]indol-1-yl)methyl Phenylmethanesulfonate (129) (Scheme 12). A solution of 127 (140 mg, 0.19 mmol) in dry pyridine (5 mL) was treated with α -toluenesulfonyl chloride (210 mg, 1.11 mmol) at 0 °C. The mixture was stirred for 1 h, then poured into a beaker of ice water, stirred for further 10 min, and then extracted with EtOAc $(3\times)$. The combined organic layers were washed with water and brine, dried, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with CH₂Cl₂/MeOH (19:1) to give 129 as a yellow solid (106 mg, 61%): mp 109 °C. ¹H NMR $[(CD_3)_2SO]: \delta 11.59 (d, J = 1.7 Hz, 1H), 9.12 (br, s, 1H), 8.97 (t, J =$ 5.5 Hz, 1H), 8.82 (d, J = 1.2 Hz, 1H), 8.22 (d, J = 8.8 Hz, 1H), 8.13 (dd, J = 8.8, 1.5 Hz, 1H), 7.22-7.12 (m, 6H), 6.98 (br, s, 1H), 4.90-4.85 (m, 1H), 4.60–4.53 (m, 6H), 4.04 (q, J = 5.7 Hz, 2H), 3.94 (s, 3H), 3.84 (s, 3H), 3.82 (s, 3H), 3.57 (q, J = 5.4 Hz, 2H), 1.39 (s, 18H). Anal. calcd for $C_{43}H_{51}N_4O_{14}PS$: C, 56.70; H, 5.64; N, 6.15. Found: C, 56.57; H, 5.86; N, 6.07.

(5-Nitro-7-((2-(phosphonooxy)ethyl)carbamoyl)-3-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl Phenylmethanesulfonate (34) (Scheme 12). A solution of 129 (100 mg, 0.11 mmol) in CH₂Cl₂ (5 mL) was treated with TFA (93 μ L, 1.21 mmol), stirred at room temperature for 24 h, and then evaporated to dryness. The residue was repeatedly dissolved in CH₂Cl₂ and then concentrated under reduced pressure to remove the excess TFA. The crude product was triturated with diethyl ether to give 34 as a yellow solid (88 mg, 100%): mp 163-167 °C. ¹H NMR $[(CD_3)_2SO]: \delta$ 11.59 (d, J = 1.7 Hz, 1H), 9.13 (br, s, 1H), 8.98 (t, I = 5.3 Hz, 1H), 8.84 (d, I = 1.1 Hz, 1H), 8.22 (d, I = 8.9 Hz, 1H), 8.15 (dd, J = 8.8, 1.4 Hz, 1H), 7.22-7.13 (m, 6H), 6.98 (br, s, 1H), 4.88-4.83 (m, 1H), 4.61-4.53 (m, 6H), 4.04-3.98 (m, 2H), 3.94 (s, 3H), 3.84 (s, 3H), 3.82 (s, 3H), 3.57 (q, J = 5.7 Hz, 2H), 2 protons not observed. HRMS (FAB) calcd for $C_{35}H_{36}N_4O_{14}PS$ (MH⁺) m/z_2 799.1686; found, 799.1678. HPLC purity, 96.5%.

(7-(N-(2-((Di-tert-butoxyphosphoryl)oxy)ethyl)sulfamoyl)-5-nitro-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl Methanesulfonate (131) (Scheme 3). A solution of DIPEA (90 mg, 0.70 mmol) in CH_2Cl_2 (1 mL) followed by a solution of 2-aminoethyl di(tert-butyl) phosphate (90 mg, 0.35 mmol) in CH₂Cl₂ (4 mL) were added dropwise to a cooled (0 °C) solution of 99 (120 mg, 0.23 mmol) in CH_2Cl_2 (18 mL). After 15 min, Cs₂CO₃ (160 mg, 0.46 mmol), MeOH (7 mL), and water (1 mL) were added. After a further 15 min, ice was added, and the mixture was poured into cold water/cold EtOAc. The organic layer was separated and then washed with cold water and cold brine, then dried (Na_2SO_4) , and evaporated to give 131 (110 mg, 74%). A portion was recrystallized (petroleum ether/EtOAc) to give red crystals: mp 146–151 °C. ¹H NMR [(CD₃)₂SO]: δ 8.60 (d, J = 1.6 Hz, 1H), 8.01 (d, J = 8.9 Hz, 1H), 7.95 (br s, 1 H), 7.81 (dd, J = 8.9, 1.7 Hz, 1H), 7.80 (s, 1 H), 4.41-4.33 (m, 1H), 4.29-4.19 (m, 2H), 3.90–3.77 (m, 3H), 3.71 (dd, J = 9.8, 2.0 Hz, 1H), 3.15 (s, 3H), 2.90 (t, J = 5.8 Hz, 2H), 1.35 (s, 18H). Anal. calcd for $C_{24}H_{36}N_3O_{11}PS_2$: C, 45.21; H, 5.69; N, 6.59. Found: C, 45.50; H, 5.82; N, 6.45

(7-(N-(2-((Di-tert-butoxyphosphoryl)oxy)ethyl)sulfamoyl)-5-nitro-3-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-2,3-dihydro-1H-benzo-[e]indol-1-yl)methyl Methanesulfonate (**132**) (Scheme 13). A solution of EDCI·HCl (280 mg, 1.44 mmol), TsOH (12 mg, 0.07 mmol), TMI-2-carboxylic acid (118 mg, 0.47 mmol), and **131** (230 mg, 0.36 mmol) in DMA (2 mL) was stirred for 5 h. Cold 5% aqueous NaHCO₃ was added, and the precipitate was filtered and washed with cold water to give **132** (295 mg, 94%) as a yellow powder. ¹H NMR [(CD₃)₂SO]: δ 11.60 (s, 1H), 9.25 (s, 1H), 9.88 (d, J = 1.6 Hz, 1H), 8.42 (d, J = 8.9 Hz, 1H), 8.15 (br s, 1H), 8.03 (dd, J = 8.9, 1.7 Hz, 1H), 7.20 (d, J = 2.0 Hz, 1H), 6.98 (s, 1H), 4.90 (t, J = 10.5 Hz, 1H), 4.66 (d, J = 11.1 Hz, 1H), 4.62–4.48 (m, 3H), 3.95 (s, 3H), 3.86–3.79 (m, 2H), 3.83 (s, 3H), 3.81 (s, 3H), 3.08–3.02 (m, 2H), 3.07 (s, 3H), 1.37 (s, 18H).

(5-Nitro-7-(N-(2-(phosphonooxy)ethyl)sulfamoyl)-3-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl Methanesulfonate (**36**) (Scheme 13). A solution of TFA (380 mg, 3.33 mmol) in CH₂Cl₂ (1 mL) was added dropwise to a solution of **132** (290 mg, 0.33 mmol) in CH₂Cl₂ (15 mL). After 15 h, solvents were removed, and the residue was triturated with Et₂O to give **36** (260 mg, 100%): mp 137–141 °C (dec.). ¹H NMR [(CD₃)₂SO]: δ 11.59 (s, 1H), 9.24 (s, 1H), 8.87 (s, 1H), 8.42 (d, *J* = 8.9 Hz, 1H), 8.26 (br s, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.18 (d, *J* = 1.8 Hz, 1H), 6.98 (s, 1H), 4.91 (t, *J* = 9.5 Hz, 1H), 4.66 (d, *J* = 10.7 Hz, 1H), 4.62–4.49 (m, 3H), 3.95 (s, 3H), 3.84 (s, 3H), 3.84–3.75 (m, 2H), 3.82 (s, 3H), 3.06 (s, 3H), 3.06–3.00 (m, 2H), 3 protons not observed. Anal. calcd for C₂₈H₃₁N₄O₁₅PS₂:H₂O: C, 43.30; H, 4.28; N, 7.21. Found: C, 43.42; H, 4.53; N, 7.04.

Di-tert-butyl (2-(1-(Hydroxymethyl)-5-nitro-2,3-dihydro-1Hbenzo[e]indole-7-sulfonamido)ethyl) Phosphate (135) (Scheme 4). A solution of DIPEA (350 mg, 2.69 mmol) and 2-aminoethyl di(tertbutyl) phosphate (272 mg, 1.08 mmol) in CH₂Cl₂ (2 mL) was added dropwise to a cooled (0 °C) solution of 113 (430 mg, 0.90 mmol) in CH₂Cl₂ (10 mL). After 30 min, Cs₂CO₃ (580 mg, 1.78 mmol), MeOH (5 mL), and water (1 mL) were added, and the mixture was allowed to warm to room temperature over 2 h. A further portion of Cs₂CO₃ (580 mg, 1.78 mmol) was added, and after 1 h, water/EtOAc were added. The organic layer was separated and washed with cold water and cold brine, dried (Na2SO4), and evaporated. The residue was purified by flash chromatography (CH₂Cl₂/MeOH; gradient, 100:0 to 95:5) followed by trituration (Et₂O) to give 135 (350 mg, 70%) as a red powder: mp 90 °C (dec.). ¹H NMR [(CD₃)₂SO]: δ 8.61 (d, J = 1.6 Hz, 1H), 7.99 (d, J = 9.0 Hz, 1H), 7.91 (br s, 1H), 7.77 (dd, J = 9.0, 1.7 Hz, 1H), 7.75 (s, 1H), 6.58 (s, 1H), 4.98 (t, J = 5.4 Hz, 1H), 3.88–3.75 (m, 4H), 3.71 (dd, J = 9.7, 2.8 Hz, 1H), 3.67–3.60 (m, 1H), 3.50-3.42 (m, 1H), 2.98 (t, J = 5.6 Hz, 2H), 1.34 (s, 18H). Anal. calcd for C23H34N3O9PS.0.5H2O: C, 48.59; H, 6.21; N, 7.39. Found: C, 48.81; H, 6.24; N, 7.39. HRMS (FAB) calcd for C₂₃H₃₅N₃O₉PS m/ z, 560.1832; found, 560.1843.

Di-tert-butyl (2-(1-(Hydroxymethyl)-5-nitro-3-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-2,3-dihydro-1H-benzo[e]indole-7sulfonamido)ethyl) Phosphate (136) (Scheme 14). A solution of EDCI·HCl (154 mg, 0.81 mmol), TsOH (6 mg, 0.03 mmol), TMI-2carboxylic acid (49 mg, 0.19 mmol), and 135 (90 mg, 0.16 mmol) in DMA (5 mL) was stirred for 2 h. Further portions of EDCI·HCl (20 mg, 0.11 mmol), TsOH (2 mg, 0.01 mmol), and TMI-2-carboxylic acid (12 mg, 0.05 mmol) were added, and after 1 h, cold 5% aqueous NaHCO3 was added, and the precipitate was filtered and washed with cold water. The residue was purified by precipitation (CH2Cl2/ MeOH) to give 136 (112 mg, 88%) as a yellow powder: mp 216-220 °C (dec.). ¹H NMR [(CD₃)₂SO]: δ 11.56 (d, J = 1.4 Hz, 1H), 2.28 (s, 1H), 8.88 (d, J = 1.5 Hz, 1H), 8.38 (d, J = 8.9 Hz, 1H), 8.13 (t, J = 5.8 Hz, 1H), 8.00 (dd, J = 8.9, 1.6 Hz, 1H), 7.20 (d, J = 2.1 Hz, 1H), 6.98 (s, 1H), 5.07 (t, J = 5.6 Hz, 1H), 4.82 (t, J = 9.6 Hz, 1H), 4.66 (dd, J = 10.5, 2.0 Hz, 1H), 4.21-4.13 (m, 1H), 3.94 (s, 3H), 3.87-3.82 (m, 2H), 3.83 (s, 3H), 3.81 (s, 3H), 3.81-3.74 (m, 1H), 3.71-3.62 (m, 1H), 3.06 (q, J = 5.8 Hz, 2H), 1.36 (s, 18H). Anal. calcd for C₃₅H₄₅N₄O₁₃PS: C, 53.03; H, 5.72; N, 7.07. Found: C, 52.77; H, 5.81; N, 7.00.

(7-(*N*-(2-((*Di*-tert-butoxyphosphoryl)oxy)ethyl)sulfamoyl)-5-nitro-3-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-2,3-dihydro-1H-benzo-[e]indol-1-yl)methyl Phenylmethanesulfonate (**140**) (Scheme 14). α-Toluenesulfonyl chloride (120 mg, 0.63 mmol) was added to a cooled (0 °C) solution of **136** (100 mg, 0.13 mmol) in N₂-purged dry pyridine (5 mL). After 15 min, a further portion of α-toluenesulfonyl chloride (120 mg, 0.63 mmol) was added, and after 1 h at 0 °C, ice water was added, and the precipitate was filtered and washed with cold water to give **140** (118 mg, 100%) as a yellow powder: mp 156–160 °C (dec.). ¹H NMR [(CD₃)₂SO]: δ 11.62 (d, *J* = 1.6 Hz, 1H), 9.26 (s, 1H), 8.86 (d, *J* = 1.6 Hz, 1H), 8.35 (d, *J* = 8.9 Hz, 1H), 8.17 (t, *J* = 5.6 Hz, 1H), 8.02 (dd, J = 8.9, 1.7 Hz, 1H), 7.23–7.11 (m, 6H), 6.98 (s, 1H), 4.88 (t, J = 9.3 Hz, 1H), 4.67–4.48 (m, 4H), 4.62 (d, J = 3.0 Hz, 2H), 3.95 (s, 3H), 3.88–3.80 (m, 2H), 3.84 (s, 3H), 3.82 (s, 3H), 3.06 (q, J = 5.6 Hz, 2H), 1.36 (s, 18H). Anal. calcd for C₄₂H₅₁N₄O₁₅PS₂·H₂O: C, 52.28; H, 5.54; N, 5.81. Found: C, 52.36; H, 5.41; N, 5.76.

(5-Nitro-7-(N-(2-(phosphonooxy)ethyl)sulfamoyl)-3-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl Phenylmethanesulfonate (**39**) (Scheme 14). TFA (140 mg, 1.23 mmol) was added dropwise to a solution of **140** (116 mg, 0.12 mmol) in CH₂Cl₂ (2 mL). After 15 h, solvents were removed to give **39** (102 mg, 100%) as a yellow powder: mp 212–215 °C. ¹H NMR [(CD₃)₂SO]: δ 11.70 (s, 1H), 9.27 (s, 1H), 8.87 (d, *J* = 1.5 Hz, 1H), 8.36 (d, *J* = 8.9 Hz, 1H), 8.19 (t, *J* = 5.7 Hz, 1H), 8.02 (dd, *J* = 8.9, 1.6 Hz, 1H), 7.2–7.10 (m, 6H), 6.98 (s, 1H), 4.95–4.85 (m, 1H), 4.65– 4.50 (m, 6H), 3.94 (s, 3H), 3.83 (s, 3H), 3.83–3.80 (m, 2H), 3.81 (s, 3H), 3.02 (q, *J* = 5.8 Hz, 2H), 2 protons not observed. Anal. calcd for C₃₄H₃₅N₄O₁₅PS₂·0.5H₂O: C, 48.40; H, 4.30; N, 6.64. Found: C, 48.51; H, 4.19; N, 6.61.

In Vitro Cytotoxicity. Inhibition of proliferation of log-phase monolayers was assessed in 96-well plates as previously described.^{13,28} The drug exposure time was 4 h under aerobic (20% O₂) or anoxic (<20 ppm O₂) conditions followed by sulforhodamine B staining 5 days later. The IC₅₀ was determined by interpolation as the drug concentration required to inhibit cell density to 50% of that of the controls on the same plate.

Clonogenic Assay. Clonogenic assays were performed as previously described.²⁵ Drug exposures were performed in 96-well plates (Nunc) using either a 37 °C humidified incubator (95% air, 5% CO_2) or in the incubator compartment (37 °C) of an anaerobic chamber where palladium catalyst-scrubbed gas (90% $N_2\!\!\!,~5\%$ $H_2\!\!\!,~5\%$ $CO_2)$ ensured severe anoxia (<0.001% O_2). Cell cultures were grown in α MEM (Gibco BRL, Grand Island, NY) containing 5% heat-inactivated fetal calf serum (FCS; Gibco BRL, Auckland, New Zealand) and maintained in exponential growth phase. For each experiment, $3 \times$ 10^5 cells in 150 μ L were seeded into wells in α MEM + 10% FCS + 10 mmol L⁻¹ added D-glucose + 200 μ mol L⁻¹ 2'-deoxycytidine (2'-dCyd) containing penicillin (100 units mL⁻¹) and streptomycin (100 μ g mL^{-1}) (P/S) and allowed to attach for at least 2 h. High glucose (final concentration, 17 mmol L^{-1}) and the presence of 2'-dCyd minimize hypoxia-induced cell-cycle arrest. Drug solutions were added (150 μ L), and cells were exposed in duplicate for 4 h. At the end of the incubation, the extracellular medium was removed, and the cells were washed with 100 μ L of PBS and trypsinized. Subsequently, cells were plated for clonogenic survival in plastic Petri dishes in α MEM + 10% FCS containing P/S. The dishes were stained with methylene blue 14 days later, and colonies containing more than 50 cells were counted.

In Vivo Activity. Antitumor activity by excision assay was performed as previously described.^{13,14} SiHa and H460 tumors were grown in male mice by subcutaneous inoculation of 10^7 cells from tissue culture, and mice were randomized to treatment groups when tumors reached a mean diameter of 8-10 mm. In each experiment, mice received vehicle alone (phosphate-buffered saline; n = 3), compound alone (dissolved in phosphate-buffered saline with 4 equiv of sodium bicarbonate; n = 3), radiation alone (15 Gy, whole body cobalt-60 γ irradiation, n = 5), or radiation followed 5 min later by compound (n =5) administered via the tail vein. Significance of treatment effects was tested using ANOVA with Holm-Sidak posthoc test on logtransformed data with SigmaPlot v11.2 (Sysat Software, Inc.). Compound 19 was formulated in 10% DMSO, 40% PEG-400, and 50% water. All animal studies were approved by the University of Auckland Animal Ethics Committee. Experiments were performed using CD1-Foxn1^{nu/nu} (nude) mice.

ASSOCIATED CONTENT

Supporting Information

Experimental details for the syntheses of intermediates 46, 45, 49, 50, 52–55, 50 (method B), 47, 65, 66, 74, 76, 93, 101, 103, 102, 105, 104, 107, 108 (method A), 108 (method B),

109 (method A), 109 (method B), 116, 120, 117, 121, 118, 122, 128, 130, 133, 134, 137, 141, 138, 142, 139, and 143. Syntheses of compounds in Table 1: 16, 18, 19 (method B), 20, 21, 23, 25, 27 (method A), 27 (method B), 27 (method C), 28 (method A), 28 (method B), and 30–32. Syntheses of compounds in Table 3: 35, 37, 38, and 40–42. Figures and tables. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Tel: +64 9 923 86788. Fax: +64 9 3737502. E-mail: r. stevenson@auckland.ac.nz.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful for the assistance of Sisira Kumara and Karin Tan for HPLC determinations, Dr. Maruta Boyd and Dr. Shannon Black for NMR spectrometry, and Wouter van Leeuwen, Caroline McCulloch, Sally Bai, and Sunali Mehta for cytotoxicity studies and in vivo antitumor assays. This work was funded by the Foundation for Research, Science and Technology (NERF grant) and the Auckland Division of the Cancer Society of New Zealand.

ABBREVIATIONS USED

AIBN, azobisisobutyronitrile; CBI, *seco*-1,2,9,9atetrahydrocyclopropa[*c*]benz[*e*]indol-4-one; DIPEA, diisopropylethylamine; DEI, 5-[(dimethylamino)ethoxy]indole; DMA, dimethylacetamide; DPPA, diphenylphosphoryl azide; *E*(1), one-electron reduction potential; EDCI·HCl, *N*-ethyl-*N'*-(3dimethylaminopropyl)carbodiimide hydrochloride; EWG, electron-withdrawing group; HAP, hypoxia-activated prodrug; HCR, hypoxic cytotoxicity ratio; iv, intravenous; LCK, log₁₀ cell kill; MEI, 5-[(morpholino)ethoxy]indole; MS, 4-methoxystyrene; pyBOP, benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate; SAR, structure—activity relationship; TEMPO, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl; TFA, trifluoroacetic acid; TFAA, trifluoroacetic anhydride; THP, tetrahydropyranyl; TMI, 5,6,7-trimethoxyindole

REFERENCES

(1) Yasuzawa, T.; Saitoh, Y.; Ichimura, M.; Takahashi, I.; Sano, H. Structure of duocarmycin SA, a potent antitumor antibiotic. *J. Antibiot.* **1991**, *44*, 445–447.

(2) Boger, D. L.; Yun, W. CBI-TMI: Synthesis and evaluation of a key analog of the duocarmycins. Validation of a direct relationship between chemical solvolytic stability and cytotoxic potency and confirmation of the structural features responsible for the distinguishing behavior of enantiomeric pairs of agents. J. Am. Chem. Soc. **1994**, *116*, 7996–8006.

(3) MacMillan, K. S.; Boger, D. L. Fundamental relationships between structure, reactivity, and biological activity for the duocarmycins and CC-1065. *J. Med. Chem.* **2009**, *52*, 5771–5780.

(4) Cristofanilli, M.; Bryan, W. J.; Miller, L. L.; Chang, A. Y-C.; Gradishar, W. J.; Kufe, D. W.; Hortobagyi, G. N. Phase II study of adozelesin in untreated metastatic breast cancer. *Anti-Cancer Drugs* **1998**, *9*, 779–782.

(5) Pavlidis, N.; Aamdal, S.; Awada, A.; Calvert, H.; Fumoleau, P.; Sorio, R.; Punt, C.; Verweij, J.; van Oosterom, A.; Morant, R.; Wanders, J.; Hanauske, A. R. Carzelesin phase II study in advanced breast, ovarian, colorectal, gastric, head and neck cancer, non-Hodgkin's lymphoma and malignant melanoma: A study of the EORTC early clinical studies group (ECSG). Cancer Chemother. Pharmacol. 2000, 46, 167–171.

(6) Wilson, W. R.; Hay, M. P. Targeting hypoxia in cancer therapy. *Nat. Rev. Cancer* **2011**, *11*, 393–410.

(7) Townes, H.; Summerville, K.; Purnell, B.; Hooker, M.; Madsen, E.; Hudson, S.; Lee, M. Investigation of a novel reductively-activatable anticancer prodrug of *seco*-CBI-TMI, an analog of duocarmycin SA. *Med. Chem. Res.* **2002**, *11*, 248–253.

(8) Wei, J.; Trzupek, J. D.; Rayl, T. J.; Broward, M. A.; Vielhauer, G. A.; Weir, S. J.; Hwang, I.; Boger, D. L. A unique class of duocarmycin and CC-1065 analogues subject to reductive activation. *J. Am. Chem. Soc.* **2007**, *129*, 15391–15397.

(9) Wilson, W. R.; Stribbling, S. M.; Pruijn, F. B.; Syddall, S. P.; Patterson, A. V.; Liyanage, H. D. S.; Smith, E.; Botting, K. J.; Tercel, M. Nitro-chloromethylbenzindolines: Hypoxia-activated prodrugs of potent adenine N3 DNA minor groove alkylators. *Mol. Cancer Ther.* **2009**, *8*, 2903–2913.

(10) Tercel, M.; Denny, W. A.; Wilson, W. R. A novel nitrosubstituted seco-CI: Application as a reductively activated ADEPT prodrug. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 2741–2744.

(11) Atwell, G. J.; Tercel, M.; Boyd, M.; Wilson, W. R.; Denny, W. A. Synthesis and cytotoxicity of 5-amino-1-(chloromethyl)-3-[(5,6,7-trimethoxyindol-2-yl)carbonyl]-1,2-dihydro-3*H*-benz[*e*]indole (amino-*seco*-CBI-TMI) and related 5-alkylamino analogues: New DNA minor groove alkylating agents. *J. Org. Chem.* **1998**, 63, 9414–9420.

(12) Gieseg, M. A.; Matejovic, J.; Denny, W. A. Comparison of the patterns of DNA alkylation by phenol and amino *seco*-CBI-TMI compounds: Use of a PCR method for the facile preparation of single end-labelled double stranded DNA. *Anti-Cancer Drug Des.* **1999**, *14*, 77–84.

(13) Tercel, M.; Atwell, G. J.; Yang, S.; Stevenson, R. J.; Botting, K. J.; Boyd, M.; Smith, E.; Anderson, R. F.; Denny, W. A.; Wilson, W. R.; Pruijn, F. B. Hypoxia-activated prodrugs: substituent effects on the properties of nitro *seco-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-*4-one (nitroCBI) prodrugs of DNA minor groove alkylating agents. *J. Med. Chem.* **2009**, *52*, 7258–7272.

(14) Tercel, M.; Atwell, G. J.; Yang, S.; Ashoorzadeh, A.; Stevenson, R. J.; Botting, K. J.; Gu, Y.; Mehta, S. Y.; Denny, W. A.; Wilson, W. R.; Pruijn, F. B. Selective treatment of hypoxic tumor cells in vivo: Phosphate pre-prodrugs of nitro analogues of the duocarmycins. *Angew. Chem., Int. Ed. Engl.* **2011**, *50*, 2606–2609.

(15) Stevenson, R. J.; Denny, W. A.; Ashoorzadeh, A.; Pruijn, F. B.; Tercel, M. The effect of a bromide leaving group on the properties of nitro analogs of the duocarmycins as hypoxia-activated prodrugs and phosphate pre-prodrugs for antitumor therapy. *Bioorg. Med. Chem.* **2011**, *19*, 5989–5998.

(16) Ashoorzadeh, A.; Atwell, G. J.; Pruijn, F. B.; Wilson, W. R.; Tercel, M.; Denny, W. A.; Stevenson, R. J. The effect of sulfonate leaving groups on the hypoxia-selective toxicity of nitro analogs of the duocarmycins. *Bioorg. Med. Chem.* **2011**, *19*, 4851–4860.

(17) Jaramillo, P.; Domingo, L. R.; Perez, P. Towards an intrinsic nucleofugality scale: The leaving group (LG) ability in CH3LG model system. *Chem. Phys. Lett.* **2006**, *420*, 95–99.

(18) Boger, D. L.; Johnson, D. S. CC-1065 and the duocarmycins: Understanding their biological function through mechanistic studies. *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 1438–1474.

(19) Katritzky, A. R.; Pilarski, B.; Urogdi, L. Efficient conversion of nitriles to amides with basic hydrogen peroxide in dimethyl sulfoxide. *Synthesis* **1989**, 949–950.

(20) Park, Y. J; Shin, H. H.; Kim, Y. H. Convenient one-pot synthesis of sulfonyl chlorides from thiols using sulfuryl chloride and metal nitrate. *Chem. Lett.* **1992**, 1483–1486.

(21) Patel, V. F.; Andis, S. L.; Enkema, J. K.; Johnson, D. A.; Kennedy, J. H.; Mohammadi, F.; Schultz, R. M.; Soose, D. A.; Spees, M. M. Total synthesis of seco (+)- and *ent*-(-)-oxaduocarmycin SA: construction of the (chloromethyl)indoline alkylating subunit by a novel intramolecular aryl radical cyclization onto a vinyl chloride. *J. Org. Chem.* **1997**, *62*, 8868–8874.

Journal of Medicinal Chemistry

(22) Boger, D. L.; Boyce, C. W.; Garbaccio, R. M.; Searcey, M. Synthesis of CC-1065 and duocarmycin analogs via intramolecular aryl radical cyclization of a tethered vinyl chloride. *Tetrahedron Lett.* **1998**, 39, 2227–2230.

(23) Boger, D. L.; McKie, J. A. An efficient synthesis of 1,2,9,9atetrahydrocyclopropa[*c*]benz[*e*]indol-4-one (CBI): An enhanced and simplified analog of the CC-1065 and duocarmycin alkylation subunits. *J. Org. Chem.* **1995**, *60*, 1271–1275.

(24) Tietze, L. F.; Major, F. Synthesis of new water-soluble DNAbinding subunits for analogues of the cytotoxic antibiotic CC-1065 and their prodrugs. *Eur. J. Org. Chem.* **2006**, 2314–2321.

(25) Tercel, M.; Lee, H. H.; Yang, S.; Liyanage, H. D. S.; Mehta, S. Y.; Boyd, P. D. W.; Jaiswal, J. K.; Tan, K. L.; Pruijn, F. B. Preparation and antitumour properties of the enantiomers of a hypoxia-selective nitro analogue of the duocarmycins. *ChemMedChem* **2011**, *6*, 1860–1871.

(26) Le Bihan, G.; Rondu, F.; Pele-Tounian, A.; Wang, X.; Lidy, S.; Touboul, E.; Lamouri, A.; Dive, G.; Huet, J.; Pfeiffer, B.; Renard, P.; Guardiola-Lemaitre, B; Manechez, D.; Penicaud, L.; Ktorza, A.; Godfroid, J.-J. Design and synthesis of imidazoline derivatives active on glucose homeostasis in a rat model of type II diabetes. 2. Syntheses and biological activities of 1,4-dialkyl-, 1,4-dibenzyl, and 1-benzyl-4alkyl-2-(4',5'-dihydro-1'H-imidazol-2'-yl)piperazines and isosteric analogues of imidazoline. J. Med. Chem. **1999**, 42, 1587–1603.

(27) Saha, U. K.; Roy, R. Synthesis of new glycopeptidomimetics based on *N*-substituted oligoglycine bearing an *N*-linked lactoside sidechain. *Chem. Commun.* **1995**, 2571–2573.

(28) Hay, M. P.; Gamage, S. A.; Kovacs, M. S.; Pruijn, F. B.; Anderson, R. F.; Patterson, A. V.; Wilson, W. R.; Brown, J. M.; Denny, W. A. Structure-activity relationships of 1,2,4-benzotriazine 1,4dioxides as hypoxia-selective analogues of tirapazamine. *J. Med. Chem.* **2003**, *46*, 169–182.